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Abstract. A finite projective geometryT = PG(n, 2) is associated with any coupling–recoupling
(N -jm) coefficient ofSU(2). This geometry is based on a duality of projective spaces and a discrete
Fourier transform. An angular momentumjk with projectionMk is attached at each pointk ∈ T .
Some of these momenta and projections are specified by the arguments of theN -jm coefficient. The
others are qualified as hidden. The value of theN -jm coefficient is given in terms of a summation
over the hidden angular momenta and hidden projections of a ‘fullpn-JM symbol’ with a high
degree of symmetry. For the 3-j coefficient (Clebsch–Gordan or Wigner coefficient), the finite
projective geometry is a line of three points with one hidden projection and the formula of hidden
momenta gives an interpretation of the combinatorial formula of Racah for the 3-j coefficient.

1. Introduction

The angular momentum graphs introduced by Levinson and Yutsiset al [16, 25] describe
the various coupling–recoupling (N -jm) coefficients ofSU(2). In these graphs, momenta
are associated with edges and triangular conditions with vertices. Tutte [23] considered the
embedding of a general graph in finite projective spaces in connection with the theory of graph
colourings. This embedding applied to the angular momentum graphs of 3n-j coefficients
reproduces the geometric description of the 3n-j coefficient in the finite projective space
P = PG(n, 2) that has been considered by Robinson [22]: momenta are associated with
points and triangular conditions with collinearity of points. Descriptions of 3n-j coefficient
in real projective spaces have been considered by Fano and Racah ([9], appendices; see also
Biedenharn and Louck [2]).

A set of graphical theorems [25] gives practical methods for computing theN -jm
coefficients from 3-j and 6-j coefficients. In [14], a combinatorial formula for theN -jm
coefficient was derived by a generating function approach based on spaces introduced by
Bargmann [1] (for a more recent approach, the chromatic method of evaluating Penrose spin
networks, see [12, 13, 17, 18]). Though this formula does not provide an efficient method for
computing theN -jm coefficients, it has the interest of being in a combinatorial form that
generalizes formulae of Racah [20] for the 3-j and 6-j coefficients. In [15], we introduced,
for a 3n-j coefficient, hidden angular momenta at points ofP and a discrete Fourier transform
between momenta and ‘comomenta’ used in the combinatorial formula of the 3n-j coefficient.
Similar Fourier transforms occur in Conway (assisted by Fung) [6] and in Fairlie and Ueno [8].
We then derived the ‘formula of hidden momenta’ that gives the value of the 3n-j coefficient
in terms of a sum over the hidden momenta of a full ‘pn-J symbol’. For the 6-j coefficient,
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there is one hidden momentum and the formula is equivalent to the combinatorial formula of
Racah ([20], equation (36)).

These results are extended in this paper to anyN -jm coefficient ofSU(2). We define a
finite projective geometryT = PG(n, 2), with hidden angular momenta and hidden projection
momenta. The value of theN -jm coefficient is given by a formula of hidden momenta. For
the 3-j coefficient, this formula is algebraically equivalent to the formula of Racah ([20],
equation (16))(
j1 j2 j3

m1 m2 m3

)
= δm1+m2+m3,0N(−1)j1−j2−m3

∑
z

(−1)z

(j3− j1−m2 + z)!

× 1

(j3− j2 +m1 + z)!z!(j2 +m2 − z)!(j1−m1− z)!(j1 + j2 − j3− z)! (1)

wherez runs over values such that all factorials have arguments inN (we use the notationN
for the set of natural integers{0, 1, 2, . . .}) and whereN is a normalizing factor that will be
given below in equation (16). Equation (1) becomes the formula of hidden momenta when the
sum overz is changed to a sum overM1 by putting

z = [(j1−M1) + (j2 −M2)− (j3−M3)]/2 (2)

and

m1 = M2 −M3 m2 = −M2 m3 = M3. (3)

The arguments of the factorials in equation (1) are transformed into

α1 = [−(j1 +M1) + (j2 +M2) + (j3 +M3)]/2

α2 = [(j1−M1)− (j2 −M2) + (j3−M3)]/2

α3 = [(j1−M1) + (j2 −M2)− (j3−M3)]/2

α4 = [−(j1−M1) + (j2 −M2) + (j3−M3)]/2

α5 = [(j1 +M1)− (j2 +M2) + (j3 +M3)]/2

α6 = [(j1 +M1) + (j2 +M2)− (j3 +M3)]/2

(4)

which we call comomenta of the 3-j coefficient. Equation (4) between comomenta and
momenta appears as a discrete Fourier transform. Defining a full 3-JM symbol〈
j1 j2 j3

M1 M2 M3

〉
=

(−1)α1+α2+α3+α4+α5+α6

α1!α2!α3!α4!α5!α6!
if αi ∈ N for i = 1, 2, . . . ,6

0 otherwise

(5)

equation (1) reads(
j1 j2 j3

m1 m2 m3

)
= N

∑
M1

(−1)α4+α5+α6

〈
j1 j2 j3

M1 M2 M3

〉
. (6)

NumberM1 has to take values within the set{−j1,−j1+1, . . . , j1−1, j1} otherwise the 3-JM
symbol of equation (5) is zero. So we interpretM1 as a projection ofj1 (we sayj1M1 satisfy
projection conditions). Equation (6) is the formula of hidden momenta for the 3-j coefficient.

The full 3-JM symbol (5) has a high degree of symmetry. It is invariant in the 6!= 720
permutations of the comomenta. For the sum in equation (6), there remain the 72 symmetries
of the 3-j coefficient (Regge [21]).
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Geometrically, the momenta and projections are defined on themomentum linePG(1, 2)
which contains only three points:

j1 M1 j2 M2 j3 M3 
(7)

A momentumjk and its projectionMk are associated to pointk = 1, 2 or 3, and the line
expresses thatj1j2j3 satisfy triangular conditions. There is only one hidden projection (we
can take any one ofM1,M2 orM3). Equation (3) is represented geometrically by theM-chain
(3, 2) consisting of two ordered points, 3 and 2, and of one line 32:

j1 M1 j2 M2 j3 M3 
(8)

The comomenta are defined on a dualcomomentum line:

α1 α4 α5 α2 α6 α3
(9)

with a pair of comomenta at each point.
Here is the plan of our exposition. The generalN -jm coefficient is defined from its

angular momentum graphG (section 2). We then review the diagrams drawn onG (section 3),
the combinatorial formula (section 4) and the projective geometry of the 3n-j coefficient
(section 5). We have then the elements and notations to construct the projective geometry of
theN -jm coefficient (section 6).

2. Angular momentum graphs

The angular momentum graphsrepresent theN -jm coefficients. Various versions of these
graphs have been considered [5, 7, 11, 16, 24, 25]. We shall use the following simple variant.

The 3-j coefficient

(
j1 j2 j3

m1 m2 m3

)
is represented by figure 1 which serves as the basic

building block. The sign (±) at the vertex indicates the cyclic order of the momenta in the 3-j

symbol. An angular momentum graph is obtained from these building blocks by a sequence
of contractions. A contraction corresponds to a summation of the form∑

m

(−1)j−m
(
. . . j . . .

. . . m . . .

)(
. . . j . . .

. . .−m . . .
)
. (10)

Letting L and R be the graphs of the 3-j coefficients

(
. . . j . . .

. . . m . . .

)
and

(
. . . j . . .

. . .−m . . .
)

respectively, the contraction is represented by joining the edgesj of L andR by an arrow
going fromL toR. For example the 4-jm coupling coefficient(
j1 j2 j3 j4

m1 m2 m3 m4

)
j5

=
∑
m5

(−1)j5−m5

(
j1 j2 j5

m1 m2 m5

)(
j3 j4 j5

m3 m4 −m5

)
(11)

is represented by figure 2.
The most general graphG so obtained is a trivalent graph (three edges meet at each of the

v vertices) withh components,f free edgeslinked to one vertex only andg bound edgeslinked
to vertices at each extremity (when the extremities are linked to the same vertex, the edge is a
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j1m1

j3m3

j2m2

-
j2m2

j1m1

j5

j4m4

j3m3

- -

Figure 1. The 3-j coefficient. Figure 2. A 4-jm coupling coefficient.

j7m7

j9m9

j5m5

+ +

j2

j1
+

j6

v5

v9

v7

j1

j2j3

j4

j5
j6

Figure 3. A 3-jm coupling–recoupling coefficient.
Figure 4. The 6-j coefficient

{
j1 j2 j3
j4 j5 j6

}
.

loop). Each edge is labelled with an angular momentumj accompanied by its projectionm
in the case of a free edge. The graph is decorated with arrows on bound edges (changing the
direction of an edgej multiplies the coefficient by(−1)2j ) and± signs at vertices (changing
the sign of a vertex wherej1j2j3 meet multiplies the coefficient by(−1)j1+j2+j3). We are
considering only coefficients whose projections add up to zero (

∑
m = 0), so that we do not

decorate the free edges of the graphs. Usually, we are interested in connected graphs (h = 1).
Coupling coefficients are then represented bytrees, as in figure 2. We have a coupling–
recoupling coefficient as in figure 3 when the graph hascircuits and a 3n-j coefficient when
the graph has no free edge as in figure 4. We use the nameN -jm coefficient for the most
general graph (including 3n-j ) and 3-jm (4-jm) coefficients for graphs with 3 (4) free edges.

3. The open and closed diagrams

In this section, we define subsets of edges ofG that are used to express the value of theN -jm
coefficient. The following presentation is an adaptation to our needs of the definition of cycles
by Tutte [23] (see also Holton and Sheenhan [10]).

Let E be the set of edges of graphG. For figure 3,E = {1, 2, 5, 6, 7, 9} where we
designate the edges by integers. Theedge spaceE of the graph is the vector space over the
2-element fieldF2 = {0, 1} of functionsE → F2. The support of a functionw ∈ E is the
subsetW ⊆ E of the edgese ∈ E such thatw(e) = 1. We shall not distinguish between a
function and its support. The sum of two edge subsetsW,W ′ ⊆ E is then their symmetric
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e1 e2 e3

e4 e5 e6 e7 = τ

Figure 5. The closed diagrams of the 6-j coefficient.

difference(W ∪W ′) \ (W ∩W ′).
Let V be the set of vertices of graphG. For figure 3,V = {v5, v7, v9} wherevk is the

vertex incident with free edgek. We associate with each free edge a supplementary 1-valent
vertex placed at the unlinked extremity of the edge and called itsend. We obtain in this way a
graphG′ with v + f vertices andg + f edges. Its edge space can be identified with the edge
spaceE of G. Thevertex spaceV is the vector space overF2 of functionsV ′ → F2 from the
set of verticesV ′ of G′ to F2. Similarly as for the edge space, we do not distinguish between
a functionφ ∈ V and the subset ofV ′ which is the support ofφ.

Let a ∈ E be an edge inG orG′ ands, s ′ ∈ V ′ be theendverticesof a, that is the vertices
in G′ incident witha. We haves = s ′ whena is a loop. Lettingwa ∈ E , φs ∈ V, φs ′ ∈ V
correspond respectively to the subsets{a} ⊆ E, {s}, {s ′} ⊆ V ′, we can define a linear function

E ∂→ V such that

∂wa = φs + φs ′ . (12)

This function∂ gives the endvertices of an edge, or, more generally, of a subset of edges. For
example, if the endvertices of edgeb ares ′ ands ′′, the subset{a, b} ⊆ E corresponding to
wab = wa +wb ∈ E form a path with two extremitiess ands ′′ given by

∂wab = ∂wa + ∂wb = (φs + φs ′) + (φs ′ + φs ′′) = φs + φs ′′ . (13)

A cycle of graphG is a subset of edgesw ∈ E such that∂w = 0. The connected
components of a cycle are calledcircuits. In other words, a cycle is a subset of edges that is
a union of any number of disjoint circuits. For the 6-j coefficient, there are 8= 23 cycles,
the seven cycles represented in figure 5 and the empty set (thezero cycle). Note that we have
changed the labelling of [15] for these cycles. Given two cyclese1, e2 and scalarsλ1, λ2 ∈ F2,
the linear combinationλ1e1 + λ2e2 is a cycle: the cycles form thecycle-subspaceC of E . The
dimension ofC for graphG is g − v + h ([3, 4]). The non-zero cycles, also calledclosed
diagrams, form the setC \ {0} of q = 2g−v+h − 1 elements.

For two different free edgesa andb, with respective endssa and sb (that we identify
with elements ofV), anopen diagram of typea → b is a subset of edgesω ∈ E , such that
∂ω = sa + sb. We distinguish open diagrams of typesa → b andb → a corresponding to
the sameω ∈ E , and call themreversed diagrams. In other words, we can think of an open
diagram of typea→ b as a subset of edges formed of the disjoint union of one oriented path
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e1 e2 e3

e4 e5 e6

Figure 6. The open diagrams of the 3-j coefficient.

going from edgea to b, that we callopen path, and any number of circuits. We denote by�ab
the set of open diagrams of typea → b. If a andb are in different components of graphG,
there is no open diagram of typea → b and�ab is empty. Otherwise, ifω,ω′ ∈ �ab, then
ω−ω′ is a cycle and�ab is an affine subspace ofE containing 2g−v+h elements. The set of all
open diagrams� contains, in the case of a connected graph,p = f (f − 1)2g−v+1 elements.
For the 3-j coefficient, there are six open diagrams, represented in figure 6 and denoted bye1,
e2, . . . ,e6. There are three pairs of reversed diagrams:(e1, e4), (e2, e5) and(e3, e6).

For a connected 3n-j coefficient (v = 2n, f = 0, g = 3n, h = 1), the dimension ofC is
n + 1, there areq = 2n+1− 1 closed diagrams and no open diagram (p = 0).

For a connected coupling coefficient withv couplings (f = v + 2, g = v − 1, h = 1),
there arep = (v + 2)(v + 1) open diagrams and no closed diagram (dimC = 0, q = 0).

4. The combinatorial formula

In this section we review the combinatorial formula of theN -jm coefficient [14], which is
based on the open and closed diagrams ofG. We follow a presentation similar to the one we
used in [15] for the combinatorial formula of the 3n-j coefficient. We say that a vertex ofG
is a vertex of diagramei if it is incident with edges ofei . To each diagramei is associated a
signεi = ±1 computed by the following rules:

(i) Orient all circuits ofei in an arbitrary fashion.

(ii) Multiply the factors:

• at each vertex ofei , a factor of +1 if the order of the edges is (incoming edge, outgoing
edge, third edge) and−1 otherwise:

+ +

+1 -1 +1-1
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• on each bound edge ofei , a factor of +1 if the directions of the edge and diagram are
opposite or−1 if they are the same:

+1 -1

• by a factor of−1 for each circuit.

There is an even (resp. odd) total number of edges and vertices on a circuit (resp. open path).
The sign of a diagram is thus independent of the orientations chosen on the circuits. The signs
of reversed open diagrams are opposite.

Examples. For the 6-j coefficient (figures 4 and 5)εi = 1 for all closed diagrams; for the
3-j coefficient (figures 1 and 6)ε1 = ε2 = ε3 = 1 andε4 = ε5 = ε6 = −1.

To each set of values of momenta in a coupling–recoupling coefficient we associate an

arrayx of these values. For example, we associate the 2× 3 arrayx =
[
j1 j2 j3

m1 m2 m3

]
to

the 3-j coefficient

(
j1 j2 j3

m1 m2 m3

)
. We denote byR the space of arrays like these when the

entries are integers or half-integers that satisfy the triangular and projection conditions of the
N -jm coefficient. We denote by{x} the value of the coefficient associated to arrayx ∈ R.

For arrays inR, we have the usual addition and multiplication by a scalarλ ∈ N. For

example, in the case of the 3-j coefficient, if x ′ =
[
j ′1 j ′2 j ′3
m′1 m′2 m′3

]
we havex + x ′ =[

j1 + j ′1 j2 + j ′2 j3 + j ′3
m1 +m′1 m2 +m′2 m3 +m′3

]
andλx =

[
λj1 λj2 λj3

λm1 λm2 λm3

]
. It is easy to see that if

x, x ′ ∈ R, λ ∈ N thenx + x ′ ∈ R, λx ∈ R (R is closed under addition and multiplication by a
non-negative integer scalar).

To each diagramei we associate an array inR corresponding to momenta of1
2 on the

edges ofei , and, if ei ∈ �ab, with projection 1
2 (resp. − 1

2) on free edgeb (resp. a). The
remaining momenta and projections are zero. To simplify notations, these elements ofR are
denoted by the same name as the diagrams. They are for the 3-j coefficient:

e1 =
[

0 1
2

1
2

0 − 1
2

1
2

]
e2 =

[ 1
2 0 1

2
1
2 0 − 1

2

]
e3 =

[ 1
2

1
2 0

− 1
2

1
2 0

]
e4 =

[
0 1

2
1
2

0 1
2 − 1

2

]
e5 =

[ 1
2 0 1

2

− 1
2 0 1

2

]
e6 =

[ 1
2

1
2 0

1
2 − 1

2 0

]
.

(14)

Each elementx ∈ R can be decomposed over thesep + q arraysei ∈ R (i = 1, 2, . . . , p
corresponds to thep open diagrams andi = p + 1, p + 2, . . . , p + q corresponds to theq
closed diagrams) as

x =
p∑
i=1

αiei +
p+q∑
i=p+1

βiei αi, βi ∈ N. (15)

We callαi (resp.βi) the [α- (resp.β-)] comomentumassociated toei . In casep or q is zero,
the corresponding sum is omitted in equation (15). Since the arraysei are not independent in
R, decomposition (15) is not unique in general, but the number of different decompositions is
always finite because the comomenta have to be non-negative integers.
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The normalizing factorN of the coefficient is the product of the triangle factors1abc of
thev couplings (a, b, c) (one for each vertex) and of thef free edge factorsNjm (one for each
free edge):

N =
∏
(a,b,c)

1abc

∏
(j,m)

Njm (16)

1abc =
(
(a + b − c)!(b + c − a)!(c + a − b)!

(a + b + c + 1)!

)1/2

(17)

Njm = ((j +m)!(j −m)!)1/2. (18)

The value of the coefficient is expressed as (see [14], equation (16))

{x} = N
∑ (|α| + |β| + 1)!

(|α| + 1)!

p∏
i=1

(−εi)αi
αi !

p+q∏
i=p+1

(−εi)βi
βi !

(19)

where the sum is over the decompositions (15) ofx in comomenta and where|α| =∑p

i=1 αi ,
|β| =∑p+q

i=p+1βi .
Equation (19) is aK-fold summation, where

K = p + q − I (20)

is the difference between the numberp + q of comomenta and the numberI of independent
momenta and projections. For a connected 3n-j coefficient (I = g = 3n,p = 0,q = 2n+1−1)
K = 2n+1−1−3n. For a connected coupling coefficient withv couplings (p = (v+2)(v+1),
q = 0), since the projections have sum 0,K = p − (g + 2f − 1) = v2.

Example (3-j coefficient). In the case of the 3-j coefficient, decomposition (15)x =∑6
i=1 αiei , where theei ∈ R are given by equation (14), expresses the momenta and projections

of the 3-j coefficient corresponding to a set of values of the comomenta(αi)16i66 as

j1 = ( +α2 + α3 + α5 + α6)/2

j2 = (+α1 + α3 + α4 + α6)/2

j3 = (+α1 + α2 + α4 + α5 )/2

m1 = ( +α2 − α3 − α5 + α6)/2

m2 = (−α1 + α3 + α4 − α6)/2

m3 = (+α1− α2 − α4 + α5 )/2.

(21)

The value of the 3-j coefficient, equation (19), reads(
j1 j2 j3

m1 m2 m3

)
= N

∑ (−1)α1+α2+α3

α1!α2!α3!α4!α5!α6!
(22)

whereN = 1j1j2j3Nj1m1Nj2m2Nj3m3 and where the sum is over the sets of comomenta with
values inN satisfying the set of equations (21). Solving equations (21) for the comomentaαi
in terms ofj1, j2, j3, m1, m2 andz = α3 and using these expressions in equation (22) gives
Racah’s formula (1).

5. The projective geometry of the 3n-j coefficient

In this section we review results of [15] for the 3n-j coefficient. We assume for simplicity graph
G to be connected and without cuts on one or two edges. The projective spaceP ∗ = PG(n∗, 2)
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τ = e7

e1 e3

e4 e2 e6

e5

j3j2j1

j4j6

j5

j7

Figure 7. The Fano plane of comomentaP ∗ for the 6-j
coefficient.

Figure 8. The Fano plane of momentaP for the 6-j
coefficient.

is identified withC \ {0}, the set of thepn = 2n+1− 1 closed diagrams of the 3n-j coefficient.
In the dual projective spaceP = PG(n, 2), 3n points are identified with edges ofG by

edgek ∈ G is identified with pointk ∈ P such that the

2n cycles that contain edgek are the points ofP ∗ \ k∗ (23)

where we denote byk∗ ⊂ P ∗ the dual hyperplane ofk. We also denote byE ⊂ P the set of
the points identified as edges ofG. We callE the embedding ofG in P . When three edges
of G are incident at one vertex, the corresponding points inP are collinear. By duality of
property (23) we have

the set of edges of cyclei ∈ P ∗ isE \ i∗ (24)

wherei∗ ⊂ P is the hyperplane dual toi. Hidden momenta are associated with thepn − 3n
points ofP \ E. For the 6-j coefficient these projective spaces are Fano planes (figures 7
and 8) with one hidden momentumj7.

For each pointk ∈ P , we denote byjk the associated visible (already inG) or hidden
momentum and byχk the irreducible character of the Abelian groupC defined by

χk(i) =
{

1 if i ∈ k∗ or i = 0

−1 otherwise.
(25)

The comomentali associated to pointsi ∈ P ∗ are expressed in terms of momenta as a
discrete Fourier transform

li = − 1

2n−1

∑
k∈P

χk(i)jk for i ∈ P ∗ (26)

with inverse transform

jk = 1
2

∑
i∈P ∗\k∗

li for k ∈ P. (27)

Let us say that when we give to theβ-comomentaspecified values, matrix equation (15) (here
p = 0) determinessample valuesof the momentajk. The sample value ofjk for k ∈ E ⊂ P
is also given by equation (27), withli identified with theβ-comomentum associated to cycle
i. The set of equations (27) is thus an enlargement of matrix equation (15) and, since it is
invertible, we can express equation (19) as follows.
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Denoting byX an array ofpn angular momentajk (k ∈ P ), the fullpn-J symbol〈X〉 is
defined in terms of the comomenta (26) by

〈X〉 =

(−1)|l|(|l| + 1)!∏

i∈P ∗ li !
if ∀i ∈ P ∗ li ∈ N

0 otherwise
(28)

where|l| = ∑
i∈P ∗ li . The value of the 3n-j coefficient is given by the formula of hidden

momenta,

{x} = N
∑

(−1)t (X)〈X〉 (−1)t (X) =
∏
i∈P ∗

(εi)
li (29)

whereN is as in equation (16) and where the sum is over the hidden momenta of the fullpn-J
symbol. The condition∀i ∈ P ∗, li ∈ N in equation (28) implies that the fullpn-J symbol is
zero if there is a lineabc in P such thatjajbjc do not satisfy triangular conditions. The sum in
equation (29) is thus limited by the triangular conditions associated to thepn(pn − 1)/6 lines
of the projective space.

6. The projective geometry of theN -jm coefficient

In this section we generalize the results of the preceding section to anyN -jm coefficient with
graphG. TheN -jm coefficient is still described by a finite projective space (notedT ), but at
each pointk ∈ T are attached a momentumjk with projectionMk, and at each point in the
dual space a pair of comomenta. The geometry of theN -jm coefficient depends not only on
the embeddingE ⊂ T of G, but also on aM-chain that specifies the projectionsma of the
N -jm coefficient in terms of theMk of T . We present a construction of this geometry based
on a 3n-j coefficient obtained by completing graphG.

6.1. The graphG

Let us denote thef free edges ofG by numbers 1, 2, . . . , f (with i ≡ i + f ) and their ends
by si , thus fixing an (arbitrary) cyclic order. By addingf outer edgessisi+1, labelled withτi
(i ≡ 1, 2, . . . , f ) to graphG, we construct a trivalent graphG that we call acompletionofG.
Puttingn = (g + 2f − 3)/3,G is the graph of a 3(n+ 1)-j coefficient with 3(n+ 1) edges and
2(n + 1) vertices. We call the cycleτ = {τ1, τ2, . . . , τf } of G theouter cycle.

Example (3-j coefficient). We take the cyclic order 123 for the free edges ofG = figure 1.
We haven = 1 andG is figure 4 of the 6-j coefficient with outer cycleτ = {4, 5, 6}.

For each open diagramω ∈ �ab ofGwe define a closed diagram ofG, notedω and called
thecompletionofω, obtained by adjoining toω the outer edgesτb, τb+1, . . . , τa−1. Graphically,
to obtainω from ω, we join b to a on the outer cycle going in the cyclic order. For the 3-j

coefficient, the completion of the open diagramei (i = 1, 2, . . . ,6) in figure 6 is the closed
diagramei of the 6-j coefficient in figure 5. We say that cycles ofG of the formω are oftype
α. Note thatω′ = ω + τ is also of typeα and is the completion of the open diagramω′ ∈ �ba
reversed ofω ∈ �ab.

We define the completionw of a closed diagramw of G to bew itself when considered
as a cycle ofG. Such a cyclew of G is said oftypeβ, and cyclew + τ of G is said oftype
γ . The closed diagrams ofG are thus classified in typesτ (for the outer cycle),α, β, γ andδ
(for the remaining diagrams).
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j2

j1

j5

j4

j3

j6 j8

j9

j7

Figure 9. Completion of figure 2 or 3.

τ δ

δ α

τ β

γ α

Figure 10. Closed diagrams of typesτ , δ andα in the
completion of figure 2. Arrows show the cyclic order on
the outer cycle.

Figure 11. Closed diagrams of typesτ , β, γ andα in the
completion of figure 3.

Examples. Taking figure 9 as a completion of figure 2, figure 10 shows the outer cycleτ ,
the two diagrams of typeδ, and one diagram of typeα which is the completion of an open
diagram of�32; the remaining 11 diagrams ofG are of typeα. Taking the same figure 9 as a
completion of figure 3, figure 11 shows the outer cycleτ , the only diagrams of typesβ andγ ,
and one diagram of typeα which is the completion of an open diagram of�79; the remaining
11 diagrams ofG are of typeα.

We define the projective spacesP andP ∗ forG as in section 5, but their dimension is now
n+ 1 instead ofn and the number of points ofP (orP ∗) ispn+1 = 2pn + 1 withpn = 2n+1−1.

6.2. The projective spaceT of momenta and theM-chainF

Let T be the hyperplane ofP dual to the outer cycleτ ∈ P ∗. By property (24),T contains all
edges ofG. We callT theprojective space of momentaof G, and say as before that the set
of edgesE is embedded inT . This embeddingE ⊂ T is the same as the embedding ofĜ in
PG(n, 2), where grapĥG is obtained by joining allf ends ofG (or shrinking cycleτ ofG to
a point). It is thus independent of the cyclic order of the free edges used to constructP .

The outer edgesτ1, . . . , τf ofGare identified with points ofP \T . Choosing anyt ∈ P \T ,
that we call thecentreof P , we put, ift 6= τa, ρa = t + τa ∈ T for a = 1, 2, . . . , f . There are
two kinds of choices of the centret :

• The centre is different from all outer edges. We call the ordered set of thef pointsρa and
f linesρa−1ρa (a ≡ 1, 2, . . . , f ) the(closed)M-chainF = (ρ1, ρ2, . . . , ρf ).
• The centre is one of the outer edges. Let us taket = ρf . The aboveF exists inT ∪ {0}

with ρf = 0. By keeping only its points and lines inT , we obtain the(open)M-chain
F = (ρ1, ρ2, . . . , ρf−1) of f − 1 points andf − 2 lines.
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Free edgea of G is incident with the outer edgesτa−1 andτa, so thata = ρa−1 + ρa, which
means that theM-chain has the following property:

free edgea of G is the third point on lineρa−1ρa of the

M-chain. For an openM-chain, the beginningρ1 (resp.

endingρf−1) of theM-chain is identified with free edge 1

(resp.f ) of G.

(30)

Example (3-j coefficient). The first case occurs when we taket at j7. The closedM-chain
is (1, 2, 3) with free edge 1 (resp. 2, 3) being the third point on line 23 (resp. 31, 12). The
second case occurs for the other choices of the centre. Fort at j4, the openM-chain(3, 2) is
shown in equation (8).

6.3. The projective spaceT ∗ of comomenta

Let T ∗ be the hyperplane ofP ∗ dual to the centret ∈ P . ConsideringT andT ∗ as dual
projective spacesPG(n, 2) of dimensionn, we callT ∗ theprojective space of comomentaof
G. At point i ∈ T ∗, we have already comomentumli of P ∗, which we callupper comomentum
of T ∗. We also associate toi ∈ T ∗ thelower comomentuml′i = lτ+i , which is the comomentum
inP ∗ at the third point on lineτ i. The types (α, β, γ or δ) of these upper and lower comomenta
are the types of the corresponding cycles inP ∗.

At point k ∈ T , we already have momentumjk of P . We also associate tok a projection

Mk = jt+k − jt (31)

which is the difference of the momenta at pointr = t + k in P \ T (the third point on the line
joining k to the centre) and at the centre. The triangular conditionsjkjrjt imply that jkMk

satisfies projection conditions.
Fork ∈ T , the discrete Fourier transform expressing the momenta in terms of comomenta

is (see the appendix):

jk = 1
2

∑
i∈T ∗\k∗

(li + l′i ) (32)

Mk = 1
2

∑
i∈T ∗\k∗

(li − l′i ) (33)

with inverse transform fori ∈ T ∗:
li = − 1

2n
∑
k∈T

χk(i)(jk +Mk) (34)

l′i = −
1

2n
∑
k∈T

χk(i)(jk −Mk). (35)

Let us now show that we can identify which comomentali l
′
i of typesα andβ are associated

to closed and open diagrams ofG only from the embeddingE ⊂ T and theM-chainF . Using
property (24), we obtain the following, which proves also that the 2n+1(f−1)! arbitrary choices
(cyclic ordering of thef free edges, choice of the centre among 2n+1 points) in the construction
of T andT ∗ are completely encoded by theM-chainF :

• If i = w ∈ T ∗ is the completion of a closed diagramw ofG, thenE \ i∗ is the set of edges
of w. The upper comomentumli is then associated tow and the lower comomentuml′i is
of typeγ . Note that, since the completion of any closed diagram ofG is inT ∗, comomenta
of typeβ are always upper comomenta.
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• If i = ω ∈ T ∗ is the completion of an open diagramω ∈ �ab of G, thenE \ i∗ is the
set of edges ofω andF \ i∗ is the open chainρbρb+1 . . . ρa−1. Comomentumli is then
associated toω andl′i to the reversed open diagramω′.

We also denote the comomenta of typesα andβ by (αi)16i6p and(βi)p<i6p+q , labelled
accordingly to the above associations, and those of typesγ and δ by (γi)p+q<i6p+2q and
(δi)p+2q<i62pn , labelled arbitrarily (αβγ δ notationfor comomenta).

Example (3-j coefficient). When we take the centret of P atj4, T ∗ is the comomentum line
e1e5e6. The ordered pair of comomentali l′i at e1 (resp. e5, e6) is the pairα1α4 (resp. α5α2,
α6α3) as pictured in equation (9). Equations (34) and (35) give equation (4).

6.4. The formula of hidden momenta

Let us give specified values to(αi)16i6p and(βi)p<i6p+q and so to comomenta ofP ∗ of types
α andβ. We call, as before,sample valuesthe values of momentajk and projectionsma of
theN -jm coefficient that result from matrix equation (15). We putli = 0 for the comomenta
of P ∗ of typesγ andδ. All upper and lower comomenta ofT ∗ have then specified values. We
use these comomenta ofP ∗ (with an arbitrary value for comomentumlτ at the outer cycle) in
equation (27) to compute the momenta at edges ofG. The sample value ofjk at edgek of G
is the same as momentum at edgek of G and the sample value ofma on free edgea of G is
given byjτa − jτa−1, the difference of momenta on the outer edgesτa andτa−1 of G adjacent
to a. The sample value ofjk at edgek of G is thus given by equation (32). The sample value
ofma is related to the projectionsMk (defined by equation (31) and given by equation (33)) at
points of theM-chain. If theM-chain is closed,

ma = Mc −Mb (36)

whereb = ρa−1 andc = ρa are collinear witha by property (30). If theM-chain is open,
with beginningd = ρ1 and endinge = ρf−1, equation (36) is replaced by

md = Md me = −Me (37)

for free edgesd ande in G.

Example (3-j coefficient). When we take the centret of P at j7, the projectionsMk are
defined from

M1 = j4 − j7 M2 = j5− j7 M3 = j6− j7 (38)

and the closedM-chain(1, 2, 3) corresponds to relations

m1 = M3−M2 m2 = M1−M3 m3 = M2 −M1. (39)

When we take the centret of P at j4, the projectionsMk are defined from

M1 = j7− j4 M2 = j6− j4 M3 = j5− j4 (40)

and the openM-chain(3, 2) corresponds to relations (3).

The system of equations (32) and (33) is thus an enlargement of the matrix equation (15).
It defines an arrayX of 2pn values of momenta and projections(jkMk)k∈T associated with the
pn points of the projective spaceT for a specified set of comomenta. We callhidden momenta
thejk that do not correspond to edges inG. The projectionsMk on theM-chain are related to
the projectionsma of theN -jm coefficient by equations (36) and (37). In the case of an open
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M-chain, thesef − 1 projections are completely determined (they arevisible projections).
In the case of a closedM-chain, thesef projections form a set with onehidden projection
(any one of them). The remainingMk, at points not in theM-chain, are also calledhidden
projections. It can surprisingly happen that at free edgek (wherejkmk are known) projection
Mk is hidden.

Example (3-j coefficient). When we take the centret of P at j4, the openM-chain is
(3, 2). There is only one hidden projectionM1. The system of equations (32) and (33) is
an enlargement of equation (21) (withM2 = −m2 andM3 = m3) containing the additional
equation for hidden projectionM1:

M1 = (−α2 − α3 + α5 + α6)/2. (41)

The inverse of the system of equations (21) and (41) is the system of equations (4) (which are
the same as equations (34) and (35)).

For arbitrary values of momentajk and projectionsMk in arrayX, we calculate the 2pn
comomenta ofT ∗ by equations (34) and (35). The fullpn-JM symbol〈X〉 is defined by, using
theαβγ δ notation for comomenta,

〈X〉 =


(|α| + |β| + 1)!

(|α| + 1)!

(−1)|α|+|β|∏p

i=1 αi !
∏p+q
i=p+1βi !

if all αi, βi ∈ N
and all γi = 0, δi = 0

0 otherwise.

(42)

We rewrite equation (19) as theformula of hidden momenta: the value{x} of theN -jm
coefficient is

{x} = N
∑

(−1)t (X)〈X〉 (−1)t (X) =
p∏
i=1

(εi)
αi

p+q∏
i=p+1

(εi)
βi (43)

whereN is given by equation (16) and where the sum is over the hidden momenta and hidden
projections of the fullpn-JM symbol.

The sum in equation (43) is limited by triangular conditionsjajbjc (for each lineabc in
T ), as in equation (29) for the 3n-j coefficient, and by projection conditionsjkMk (for each
point k ∈ T ). The conditionsγi = 0, δi = 0 in equation (42) have the effect of imposing
2pn − p − q relations between hidden momenta and projections. If we want to determine a
set of independent hidden momenta and projections, for each pair of conditionsli = l′i = 0 at
a cyclei ∈ T ∗ of typeδ, we remove one hidden momentum and one hidden projection and for
each conditionγi = 0, we remove one hidden projection. The total numberK of independent
hidden momenta and projections is given by equation (20).

In the case of a 3n-j coefficient, the above construction remains valid when we take for
the outer cycleτ added toG a loop disconnected fromG. All comomenta come in pairs of
typeβγ so that conditionsγi = 0 imposeMk = jk for all projections. The simpler geometry
of the 3n-j coefficient is recovered by ignoring theγ comomenta and the projections.

Each choice of theM-chain gives slightly different, but algebraically equivalent, formulae
(the assignments ofακ , βκ to li l′i and ofma toMk depend on theM-chain).

7. Concluding remarks

We have presented an interpretation of the combinatorial formula for theN -jm coefficients in
terms of hidden angular momentajk and projectionsMk. It is quite puzzling that the projections
ma of theN -jm coefficient appear only indirectly through the projectionsMk as specified by
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Figure 12. Representation of
the 3-JM symbol in Euclidean
geometry.

Figure 13. PartitionP ∗ = A ∪ B ∪ C ∪ d∗.

a M-chain. The comomenta, in the case of the 3n-j coefficient, have been interpreted as
occupation numbersin [15], but the physical interpretation of hidden angular momenta and
projections is an open question.

We have drawn (figure 12) in three-dimensional Euclidean space the momenta and
projections that take part in the construction of the projective space for the 3-j coefficient:
length[BD] = j5, length[BB ′] = M2, . . . . The seven triangular conditions ofP represented
by collinearities in figure 8 now appear as triangles (trianglej1j2j3 appears four times). When
we take the centret of P at j7, theM-chain is(1, 2, 3), the projectionsMk are defined by
equation (38) and the projectionsma by equation (39). The three points and three lines in the
M-chain are pictured as the three edges and three faces adjacent toO in tetrahedronOABC.
We finally consider a limit case in the spirit of Ponzano and Regge [19].OABC are kept
fixed andD goes to infinity in the vertical direction. The projectionsMk,mk become genuine
geometric projections ofjk on the vertical direction. In [19], this limit is used to obtain the
3-j coefficient, pictured by the shaded triangleABC, from the 6-j coefficient, pictured by
tetrahedronABCD.

Appendix. Derivation of discrete Fourier transforms between momenta and comomenta

The dual hyperplanes inP ∗ of t , r andk areT ∗ = t∗ = A∪d∗, r∗ = B ∪d∗ andk∗ = C ∪d∗,
whereA, B, C, d∗ is a partition ofP ∗ and whered∗ is the(n − 1)-dimensional projective
subspace dual to linetkr (see figure 13). Note thatτ ∈ C. From equation (27)

jk = 1
2

∑
i∈A∪B

li = 1
2

∑
i∈A
(li + li+τ ) = 1

2

∑
i∈T ∗\k∗

(li + l′i ) (44)

which proves equation (32). Also from equation (27)

jr = 1
2

∑
i∈A∪C

li jt = 1
2

∑
i∈B∪C

li (45)

so that

Mk = 1
2

∑
i∈A

li − 1
2

∑
i∈B

li = 1
2

∑
i∈A
(li − li+τ ) = 1

2

∑
i∈T ∗\k∗

(li − l′i ) (46)
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which proves equation (33).
The inverse transform, equations (34) and (35) results from properties of characters as in

the case of the 3n-j coefficient.
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