The hidden angular momenta of the coupling-recoupling coefficients of $S U(2)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33763
(http://iopscience.iop.org/0305-4470/33/4/309)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:32

Please note that terms and conditions apply.

The hidden angular momenta of the coupling-recoupling coefficients of $S U(2)$

Jean-Jacques Labarthe
Laboratoire Aimé Cotton, Université Paris 11, F91405 Orsay Cedex, France
E-mail: labarthe@sun.lac.u-psud.fr

Received 1 March 1999, in final form 22 November 1999

Abstract

A finite projective geometry $T=P G(n, 2)$ is associated with any coupling-recoupling (N-jm) coefficient of $S U(2)$. This geometry is based on a duality of projective spaces and a discrete Fourier transform. An angular momentum j_{k} with projection M_{k} is attached at each point $k \in T$. Some of these momenta and projections are specified by the arguments of the N - jm coefficient. The others are qualified as hidden. The value of the $N-j m$ coefficient is given in terms of a summation over the hidden angular momenta and hidden projections of a 'full $p_{n}-J M$ symbol' with a high degree of symmetry. For the $3-j$ coefficient (Clebsch-Gordan or Wigner coefficient), the finite projective geometry is a line of three points with one hidden projection and the formula of hidden momenta gives an interpretation of the combinatorial formula of Racah for the 3-j coefficient.

1. Introduction

The angular momentum graphs introduced by Levinson and Yutsis et al [16, 25] describe the various coupling-recoupling ($N-j m$) coefficients of $S U(2)$. In these graphs, momenta are associated with edges and triangular conditions with vertices. Tutte [23] considered the embedding of a general graph in finite projective spaces in connection with the theory of graph colourings. This embedding applied to the angular momentum graphs of $3 n-j$ coefficients reproduces the geometric description of the $3 n-j$ coefficient in the finite projective space $P=P G(n, 2)$ that has been considered by Robinson [22]: momenta are associated with points and triangular conditions with collinearity of points. Descriptions of $3 n-j$ coefficient in real projective spaces have been considered by Fano and Racah ([9], appendices; see also Biedenharn and Louck [2]).

A set of graphical theorems [25] gives practical methods for computing the N-jm coefficients from 3-j and 6-j coefficients. In [14], a combinatorial formula for the $N-j m$ coefficient was derived by a generating function approach based on spaces introduced by Bargmann [1] (for a more recent approach, the chromatic method of evaluating Penrose spin networks, see $[12,13,17,18])$. Though this formula does not provide an efficient method for computing the N-jm coefficients, it has the interest of being in a combinatorial form that generalizes formulae of Racah [20] for the $3-j$ and $6-j$ coefficients. In [15], we introduced, for a $3 n-j$ coefficient, hidden angular momenta at points of P and a discrete Fourier transform between momenta and 'comomenta' used in the combinatorial formula of the $3 n-j$ coefficient. Similar Fourier transforms occur in Conway (assisted by Fung) [6] and in Fairlie and Ueno [8]. We then derived the 'formula of hidden momenta' that gives the value of the $3 n-j$ coefficient in terms of a sum over the hidden momenta of a full ' $p_{n}-J$ symbol'. For the $6-j$ coefficient,
there is one hidden momentum and the formula is equivalent to the combinatorial formula of Racah ([20], equation (36)).

These results are extended in this paper to any N-jm coefficient of $S U(2)$. We define a finite projective geometry $T=P G(n, 2)$, with hidden angular momenta and hidden projection momenta. The value of the N - jm coefficient is given by a formula of hidden momenta. For the $3-j$ coefficient, this formula is algebraically equivalent to the formula of Racah ([20], equation (16))

$$
\begin{align*}
&\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=\delta_{m_{1}+m_{2}+m_{3}, 0} N(-1)^{j_{1}-j_{2}-m_{3}} \sum_{z} \frac{(-1)^{z}}{\left(j_{3}-j_{1}-m_{2}+z\right)!} \\
& \times \frac{1}{\left(j_{3}-j_{2}+m_{1}+z\right)!z!\left(j_{2}+m_{2}-z\right)!\left(j_{1}-m_{1}-z\right)!\left(j_{1}+j_{2}-j_{3}-z\right)!} \tag{1}
\end{align*}
$$

where z runs over values such that all factorials have arguments in \mathbb{N} (we use the notation \mathbb{N} for the set of natural integers $\{0,1,2, \ldots\}$) and where N is a normalizing factor that will be given below in equation (16). Equation (1) becomes the formula of hidden momenta when the sum over z is changed to a sum over M_{1} by putting

$$
\begin{equation*}
z=\left[\left(j_{1}-M_{1}\right)+\left(j_{2}-M_{2}\right)-\left(j_{3}-M_{3}\right)\right] / 2 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}=M_{2}-M_{3} \quad m_{2}=-M_{2} \quad m_{3}=M_{3} . \tag{3}
\end{equation*}
$$

The arguments of the factorials in equation (1) are transformed into

$$
\begin{align*}
& \alpha_{1}=\left[-\left(j_{1}+M_{1}\right)+\left(j_{2}+M_{2}\right)+\left(j_{3}+M_{3}\right)\right] / 2 \\
& \alpha_{2}=\left[\left(j_{1}-M_{1}\right)-\left(j_{2}-M_{2}\right)+\left(j_{3}-M_{3}\right)\right] / 2 \\
& \alpha_{3}=\left[\left(j_{1}-M_{1}\right)+\left(j_{2}-M_{2}\right)-\left(j_{3}-M_{3}\right)\right] / 2 \tag{4}\\
& \alpha_{4}=\left[-\left(j_{1}-M_{1}\right)+\left(j_{2}-M_{2}\right)+\left(j_{3}-M_{3}\right)\right] / 2 \\
& \alpha_{5}=\left[\left(j_{1}+M_{1}\right)-\left(j_{2}+M_{2}\right)+\left(j_{3}+M_{3}\right)\right] / 2 \\
& \alpha_{6}=\left[\left(j_{1}+M_{1}\right)+\left(j_{2}+M_{2}\right)-\left(j_{3}+M_{3}\right)\right] / 2
\end{align*}
$$

which we call comomenta of the $3-j$ coefficient. Equation (4) between comomenta and momenta appears as a discrete Fourier transform. Defining a full 3-JM symbol
$\left\langle\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ M_{1} & M_{2} & M_{3}\end{array}\right\rangle=\left\{\begin{array}{ll}\frac{(-1)^{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6}}}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!} & \text { if } \alpha_{i} \in \mathbb{N} \\ 0 & \text { otherwise }\end{array} \quad\right.$ for $\quad i=1,2, \ldots, 6$
equation (1) reads

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{6}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=N \sum_{M_{1}}(-1)^{\alpha_{4}+\alpha_{5}+\alpha_{6}}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
M_{1} & M_{2} & M_{3}
\end{array}\right) .
$$

Number M_{1} has to take values within the set $\left\{-j_{1},-j_{1}+1, \ldots, j_{1}-1, j_{1}\right\}$ otherwise the 3-JM symbol of equation (5) is zero. So we interpret M_{1} as a projection of j_{1} (we say $j_{1} M_{1}$ satisfy projection conditions). Equation (6) is the formula of hidden momenta for the $3-j$ coefficient.

The full 3-JM symbol (5) has a high degree of symmetry. It is invariant in the $6!=720$ permutations of the comomenta. For the sum in equation (6), there remain the 72 symmetries of the 3- j coefficient (Regge [21]).

Geometrically, the momenta and projections are defined on the momentum line $P G(1,2)$ which contains only three points:

A momentum j_{k} and its projection M_{k} are associated to point $k=1,2$ or 3 , and the line expresses that $j_{1} j_{2} j_{3}$ satisfy triangular conditions. There is only one hidden projection (we can take any one of M_{1}, M_{2} or M_{3}). Equation (3) is represented geometrically by the M-chain $(3,2)$ consisting of two ordered points, 3 and 2, and of one line 32:

The comomenta are defined on a dual comomentum line:

with a pair of comomenta at each point.
Here is the plan of our exposition. The general $N-j m$ coefficient is defined from its angular momentum graph G (section 2). We then review the diagrams drawn on G (section 3), the combinatorial formula (section 4) and the projective geometry of the $3 n-j$ coefficient (section 5). We have then the elements and notations to construct the projective geometry of the N-jm coefficient (section 6).

2. Angular momentum graphs

The angular momentum graphs represent the N-jm coefficients. Various versions of these graphs have been considered [5,7,11, 16,24,25]. We shall use the following simple variant. The 3- j coefficient $\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)$ is represented by figure 1 which serves as the basic building block. The sign (\pm) at the vertex indicates the cyclic order of the momenta in the 3- j symbol. An angular momentum graph is obtained from these building blocks by a sequence of contractions. A contraction corresponds to a summation of the form

$$
\begin{equation*}
\sum_{m}(-1)^{j-m}\binom{\ldots j \ldots}{\ldots m \ldots}\binom{\ldots j \ldots}{\ldots-m \ldots} \tag{10}
\end{equation*}
$$

Letting L and R be the graphs of the $3-j$ coefficients $\binom{\ldots j \ldots}{\ldots m \ldots}$ and $\binom{\ldots j \ldots}{\ldots-m \ldots}$ respectively, the contraction is represented by joining the edges j of L and R by an arrow going from L to R. For example the $4-j m$ coupling coefficient

$$
\left(\begin{array}{cccc}
j_{1} & j_{2} & j_{3} & j_{4} \tag{11}\\
m_{1} & m_{2} & m_{3} & m_{4}
\end{array}\right)_{j_{5}}=\sum_{m_{5}}(-1)^{j_{5}-m_{5}}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{5} \\
m_{1} & m_{2} & m_{5}
\end{array}\right)\left(\begin{array}{ccc}
j_{3} & j_{4} & j_{5} \\
m_{3} & m_{4} & -m_{5}
\end{array}\right)
$$

is represented by figure 2 .
The most general graph G so obtained is a trivalent graph (three edges meet at each of the v vertices) with h components, f free edges linked to one vertex only and g bound edges linked to vertices at each extremity (when the extremities are linked to the same vertex, the edge is a

Figure 1. The 3-j coefficient.

Figure 3. A 3 - $j m$ coupling-recoupling coefficient.

Figure 2. A 4-jm coupling coefficient.

Figure 4. The 6- j coefficient $\left\{\begin{array}{lll}j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6}\end{array}\right\}$.
loop). Each edge is labelled with an angular momentum j accompanied by its projection m in the case of a free edge. The graph is decorated with arrows on bound edges (changing the direction of an edge j multiplies the coefficient by $(-1)^{2 j}$) and \pm signs at vertices (changing the sign of a vertex where $j_{1} j_{2} j_{3}$ meet multiplies the coefficient by $(-1)^{j_{1}+j_{2}+j_{3}}$). We are considering only coefficients whose projections add up to zero ($\sum m=0$), so that we do not decorate the free edges of the graphs. Usually, we are interested in connected graphs $(h=1)$. Coupling coefficients are then represented by trees, as in figure 2 . We have a couplingrecoupling coefficient as in figure 3 when the graph has circuits and a $3 n-j$ coefficient when the graph has no free edge as in figure 4 . We use the name $N-j m$ coefficient for the most general graph (including $3 n-j$) and 3-jm (4-jm) coefficients for graphs with 3 (4) free edges.

3. The open and closed diagrams

In this section, we define subsets of edges of G that are used to express the value of the $N-j m$ coefficient. The following presentation is an adaptation to our needs of the definition of cycles by Tutte [23] (see also Holton and Sheenhan [10]).

Let E be the set of edges of graph G. For figure 3, $E=\{1,2,5,6,7,9\}$ where we designate the edges by integers. The edge space \mathcal{E} of the graph is the vector space over the 2-element field $\mathbb{F}_{2}=\{0,1\}$ of functions $E \rightarrow \mathbb{F}_{2}$. The support of a function $w \in \mathcal{E}$ is the subset $W \subseteq E$ of the edges $e \in E$ such that $w(e)=1$. We shall not distinguish between a function and its support. The sum of two edge subsets $W, W^{\prime} \subseteq E$ is then their symmetric

Figure 5. The closed diagrams of the $6-j$ coefficient.
difference $\left(W \cup W^{\prime}\right) \backslash\left(W \cap W^{\prime}\right)$.
Let V be the set of vertices of graph G. For figure $3, V=\left\{v_{5}, v_{7}, v_{9}\right\}$ where v_{k} is the vertex incident with free edge k. We associate with each free edge a supplementary 1 -valent vertex placed at the unlinked extremity of the edge and called its end. We obtain in this way a graph G^{\prime} with $v+f$ vertices and $g+f$ edges. Its edge space can be identified with the edge space \mathcal{E} of G. The vertex space \mathcal{V} is the vector space over \mathbb{F}_{2} of functions $V^{\prime} \rightarrow \mathbb{F}_{2}$ from the set of vertices V^{\prime} of G^{\prime} to \mathbb{F}_{2}. Similarly as for the edge space, we do not distinguish between a function $\phi \in \mathcal{V}$ and the subset of V^{\prime} which is the support of ϕ.

Let $a \in E$ be an edge in G or G^{\prime} and $s, s^{\prime} \in V^{\prime}$ be the endvertices of a, that is the vertices in G^{\prime} incident with a. We have $s=s^{\prime}$ when a is a loop. Letting $w_{a} \in \mathcal{E}, \phi_{s} \in \mathcal{V}, \phi_{s^{\prime}} \in \mathcal{V}$ correspond respectively to the subsets $\{a\} \subseteq E,\{s\},\left\{s^{\prime}\right\} \subseteq V^{\prime}$, we can define a linear function $\mathcal{E} \xrightarrow{\partial} \mathcal{V}$ such that

$$
\begin{equation*}
\partial w_{a}=\phi_{s}+\phi_{s^{\prime}} \tag{12}
\end{equation*}
$$

This function ∂ gives the endvertices of an edge, or, more generally, of a subset of edges. For example, if the endvertices of edge b are s^{\prime} and $s^{\prime \prime}$, the subset $\{a, b\} \subseteq E$ corresponding to $w_{a b}=w_{a}+w_{b} \in \mathcal{E}$ form a path with two extremities s and $s^{\prime \prime}$ given by

$$
\begin{equation*}
\partial w_{a b}=\partial w_{a}+\partial w_{b}=\left(\phi_{s}+\phi_{s^{\prime}}\right)+\left(\phi_{s^{\prime}}+\phi_{s^{\prime \prime}}\right)=\phi_{s}+\phi_{s^{\prime \prime}} . \tag{13}
\end{equation*}
$$

A cycle of graph G is a subset of edges $w \in \mathcal{E}$ such that $\partial w=0$. The connected components of a cycle are called circuits. In other words, a cycle is a subset of edges that is a union of any number of disjoint circuits. For the $6-j$ coefficient, there are $8=2^{3}$ cycles, the seven cycles represented in figure 5 and the empty set (the zero cycle). Note that we have changed the labelling of [15] for these cycles. Given two cycles e_{1}, e_{2} and scalars $\lambda_{1}, \lambda_{2} \in \mathbb{F}_{2}$, the linear combination $\lambda_{1} e_{1}+\lambda_{2} e_{2}$ is a cycle: the cycles form the cycle-subspace \mathcal{C} of \mathcal{E}. The dimension of \mathcal{C} for graph G is $g-v+h([3,4])$. The non-zero cycles, also called closed diagrams, form the set $\mathcal{C} \backslash\{0\}$ of $q=2^{g-v+h}-1$ elements.

For two different free edges a and b, with respective ends s_{a} and s_{b} (that we identify with elements of \mathcal{V}), an open diagram of type $a \rightarrow b$ is a subset of edges $\omega \in \mathcal{E}$, such that $\partial \omega=s_{a}+s_{b}$. We distinguish open diagrams of types $a \rightarrow b$ and $b \rightarrow a$ corresponding to the same $\omega \in \mathcal{E}$, and call them reversed diagrams. In other words, we can think of an open diagram of type $a \rightarrow b$ as a subset of edges formed of the disjoint union of one oriented path

${ }^{e} 1$

e_{4}

e_{2}

e_{5}

e_{3}

${ }^{e} 6$

Figure 6. The open diagrams of the $3-j$ coefficient.
going from edge a to b, that we call open path, and any number of circuits. We denote by $\Omega_{a b}$ the set of open diagrams of type $a \rightarrow b$. If a and b are in different components of graph G, there is no open diagram of type $a \rightarrow b$ and $\Omega_{a b}$ is empty. Otherwise, if $\omega, \omega^{\prime} \in \Omega_{a b}$, then $\omega-\omega^{\prime}$ is a cycle and $\Omega_{a b}$ is an affine subspace of \mathcal{E} containing 2^{g-v+h} elements. The set of all open diagrams Ω contains, in the case of a connected graph, $p=f(f-1) 2^{g-v+1}$ elements. For the $3-j$ coefficient, there are six open diagrams, represented in figure 6 and denoted by e_{1}, e_{2}, \ldots, e_{6}. There are three pairs of reversed diagrams: $\left(e_{1}, e_{4}\right),\left(e_{2}, e_{5}\right)$ and $\left(e_{3}, e_{6}\right)$.

For a connected $3 n-j$ coefficient ($v=2 n, f=0, g=3 n, h=1$), the dimension of \mathcal{C} is $n+1$, there are $q=2^{n+1}-1$ closed diagrams and no open diagram $(p=0)$.

For a connected coupling coefficient with v couplings ($f=v+2, g=v-1, h=1$), there are $p=(v+2)(v+1)$ open diagrams and no closed diagram $(\operatorname{dim} \mathcal{C}=0, q=0)$.

4. The combinatorial formula

In this section we review the combinatorial formula of the $N-j m$ coefficient [14], which is based on the open and closed diagrams of G. We follow a presentation similar to the one we used in [15] for the combinatorial formula of the $3 n-j$ coefficient. We say that a vertex of G is a vertex of diagram e_{i} if it is incident with edges of e_{i}. To each diagram e_{i} is associated a sign $\epsilon_{i}= \pm 1$ computed by the following rules:
(i) Orient all circuits of e_{i} in an arbitrary fashion.
(ii) Multiply the factors:

- at each vertex of e_{i}, a factor of +1 if the order of the edges is (incoming edge, outgoing edge, third edge) and -1 otherwise:

+1

-1

-1

+1
- on each bound edge of e_{i}, a factor of +1 if the directions of the edge and diagram are opposite or -1 if they are the same:

$+1$

-1
- by a factor of -1 for each circuit.

There is an even (resp. odd) total number of edges and vertices on a circuit (resp. open path). The sign of a diagram is thus independent of the orientations chosen on the circuits. The signs of reversed open diagrams are opposite.

Examples. For the 6-j coefficient (figures 4 and 5) $\epsilon_{i}=1$ for all closed diagrams; for the 3- j coefficient (figures 1 and 6) $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=1$ and $\epsilon_{4}=\epsilon_{5}=\epsilon_{6}=-1$.

To each set of values of momenta in a coupling-recoupling coefficient we associate an array x of these values. For example, we associate the 2×3 array $x=\left[\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right]$ to the 3-j coefficient $\left(\begin{array}{ccc}j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3}\end{array}\right)$. We denote by R the space of arrays like these when the entries are integers or half-integers that satisfy the triangular and projection conditions of the N - jm coefficient. We denote by $\{x\}$ the value of the coefficient associated to array $x \in R$.

For arrays in R, we have the usual addition and multiplication by a scalar $\lambda \in \mathbb{N}$. For example, in the case of the $3-j$ coefficient, if $x^{\prime}=\left[\begin{array}{rrr}j_{1}^{\prime} & j_{2}^{\prime} & j_{3}^{\prime} \\ m_{1}^{\prime} & m_{2}^{\prime} & m_{3}^{\prime}\end{array}\right]$ we have $x+x^{\prime}=$ $\left[\begin{array}{ccc}j_{1}+j_{1}^{\prime} & j_{2}+j_{2}^{\prime} & j_{3}+j_{3}^{\prime} \\ m_{1}+m_{1}^{\prime} & m_{2}+m_{2}^{\prime} & m_{3}+m_{3}^{\prime}\end{array}\right]$ and $\lambda x=\left[\begin{array}{ccc}\lambda j_{1} & \lambda j_{2} & \lambda j_{3} \\ \lambda m_{1} & \lambda m_{2} & \lambda m_{3}\end{array}\right]$. It is easy to see that if $x, x^{\prime} \in R, \lambda \in \mathbb{N}$ then $x+x^{\prime} \in R, \lambda x \in R$ (R is closed under addition and multiplication by a non-negative integer scalar).

To each diagram e_{i} we associate an array in R corresponding to momenta of $\frac{1}{2}$ on the edges of e_{i}, and, if $e_{i} \in \Omega_{a b}$, with projection $\frac{1}{2}$ (resp. $-\frac{1}{2}$) on free edge b (resp. a). The remaining momenta and projections are zero. To simplify notations, these elements of R are denoted by the same name as the diagrams. They are for the $3-j$ coefficient:
$e_{1}=\left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right] \quad e_{2}=\left[\begin{array}{ccc}\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2}\end{array}\right] \quad e_{3}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$
$e_{4}=\left[\begin{array}{ccc}0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2}\end{array}\right] \quad e_{5}=\left[\begin{array}{ccc}\frac{1}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2}\end{array}\right] \quad e_{6}=\left[\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right]$.
Each element $x \in R$ can be decomposed over these $p+q$ arrays $e_{i} \in R(i=1,2, \ldots, p$ corresponds to the p open diagrams and $i=p+1, p+2, \ldots, p+q$ corresponds to the q closed diagrams) as

$$
\begin{equation*}
x=\sum_{i=1}^{p} \alpha_{i} e_{i}+\sum_{i=p+1}^{p+q} \beta_{i} e_{i} \quad \alpha_{i}, \beta_{i} \in \mathbb{N} . \tag{15}
\end{equation*}
$$

We call α_{i} (resp. β_{i}) the [α - (resp. β-)] comomentum associated to e_{i}. In case p or q is zero, the corresponding sum is omitted in equation (15). Since the arrays e_{i} are not independent in R, decomposition (15) is not unique in general, but the number of different decompositions is always finite because the comomenta have to be non-negative integers.

The normalizing factor N of the coefficient is the product of the triangle factors $\Delta_{a b c}$ of the v couplings (a, b, c) (one for each vertex) and of the f free edge factors $N_{j m}$ (one for each free edge):

$$
\begin{align*}
& N=\prod_{(a, b, c)} \Delta_{a b c} \prod_{(j, m)} N_{j m} \tag{16}\\
& \Delta_{a b c}=\left(\frac{(a+b-c)!(b+c-a)!(c+a-b)!}{(a+b+c+1)!}\right)^{1 / 2} \tag{17}\\
& N_{j m}=((j+m)!(j-m)!)^{1 / 2} \tag{18}
\end{align*}
$$

The value of the coefficient is expressed as (see [14], equation (16))

$$
\begin{equation*}
\{x\}=N \sum \frac{(|\alpha|+|\beta|+1)!}{(|\alpha|+1)!} \prod_{i=1}^{p} \frac{\left(-\epsilon_{i}\right)^{\alpha_{i}}}{\alpha_{i}!} \prod_{i=p+1}^{p+q} \frac{\left(-\epsilon_{i}\right)^{\beta_{i}}}{\beta_{i}!} \tag{19}
\end{equation*}
$$

where the sum is over the decompositions (15) of x in comomenta and where $|\alpha|=\sum_{i=1}^{p} \alpha_{i}$, $|\beta|=\sum_{i=p+1}^{p+q} \beta_{i}$.

Equation (19) is a K-fold summation, where

$$
\begin{equation*}
K=p+q-I \tag{20}
\end{equation*}
$$

is the difference between the number $p+q$ of comomenta and the number I of independent momenta and projections. For a connected $3 n-j$ coefficient ($I=g=3 n, p=0, q=2^{n+1}-1$) $K=2^{n+1}-1-3 n$. For a connected coupling coefficient with v couplings $(p=(v+2)(v+1)$, $q=0)$, since the projections have sum $0, K=p-(g+2 f-1)=v^{2}$.

Example (3-j coefficient). In the case of the 3-j coefficient, decomposition (15) $x=$ $\sum_{i=1}^{6} \alpha_{i} e_{i}$, where the $e_{i} \in R$ are given by equation (14), expresses the momenta and projections of the $3-j$ coefficient corresponding to a set of values of the comomenta $\left(\alpha_{i}\right)_{1 \leqslant i \leqslant 6}$ as

$$
\begin{align*}
& j_{1}=\left(+\alpha_{2}+\alpha_{3} \quad+\alpha_{5}+\alpha_{6}\right) / 2 \\
& j_{2}=\left(+\alpha_{1}+\alpha_{3}+\alpha_{4}+\alpha_{6}\right) / 2 \\
& j_{3}=\left(+\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{5} \quad\right) / 2 \\
& m_{1}=\left(\begin{array}{cc}
+\alpha_{2}-\alpha_{3} & \left.-\alpha_{5}+\alpha_{6}\right) / 2
\end{array}\right. \tag{21}\\
& m_{2}=\left(-\alpha_{1} \quad+\alpha_{3}+\alpha_{4} \quad-\alpha_{6}\right) / 2 \\
& m_{3}=\left(+\alpha_{1}-\alpha_{2} \quad-\alpha_{4}+\alpha_{5} \quad\right) / 2 .
\end{align*}
$$

The value of the $3-j$ coefficient, equation (19), reads

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \tag{22}\\
m_{1} & m_{2} & m_{3}
\end{array}\right)=N \sum \frac{(-1)^{\alpha_{1}+\alpha_{2}+\alpha_{3}}}{\alpha_{1}!\alpha_{2}!\alpha_{3}!\alpha_{4}!\alpha_{5}!\alpha_{6}!}
$$

where $N=\Delta_{j_{1} j_{2} j_{3}} N_{j_{1} m_{1}} N_{j_{2} m_{2}} N_{j_{3} m_{3}}$ and where the sum is over the sets of comomenta with values in \mathbb{N} satisfying the set of equations (21). Solving equations (21) for the comomenta α_{i} in terms of $j_{1}, j_{2}, j_{3}, m_{1}, m_{2}$ and $z=\alpha_{3}$ and using these expressions in equation (22) gives Racah's formula (1).

5. The projective geometry of the $3 n-j$ coefficient

In this section we review results of [15] for the $3 n-j$ coefficient. We assume for simplicity graph G to be connected and without cuts on one or two edges. The projective space $P^{*}=P G\left(n^{*}, 2\right)$

Figure 7. The Fano plane of comomenta P^{*} for the 6- j coefficient.

Figure 8. The Fano plane of momenta P for the $6-j$ coefficient.
is identified with $\mathcal{C} \backslash\{0\}$, the set of the $p_{n}=2^{n+1}-1$ closed diagrams of the $3 n-j$ coefficient. In the dual projective space $P=P G(n, 2), 3 n$ points are identified with edges of G by

$$
\begin{equation*}
\text { edge } k \in G \text { is identified with point } k \in P \text { such that the } \tag{23}
\end{equation*}
$$ 2^{n} cycles that contain edge k are the points of $P^{*} \backslash k^{*}$

where we denote by $k^{*} \subset P^{*}$ the dual hyperplane of k. We also denote by $E \subset P$ the set of the points identified as edges of G. We call E the embedding of G in P. When three edges of G are incident at one vertex, the corresponding points in P are collinear. By duality of property (23) we have

$$
\begin{equation*}
\text { the set of edges of cycle } i \in P^{*} \text { is } E \backslash i^{*} \tag{24}
\end{equation*}
$$

where $i^{*} \subset P$ is the hyperplane dual to i. Hidden momenta are associated with the $p_{n}-3 n$ points of $P \backslash E$. For the $6-j$ coefficient these projective spaces are Fano planes (figures 7 and 8) with one hidden momentum j_{7}.

For each point $k \in P$, we denote by j_{k} the associated visible (already in G) or hidden momentum and by χ_{k} the irreducible character of the Abelian group \mathcal{C} defined by

$$
\chi_{k}(i)= \begin{cases}1 & \text { if } \quad i \in k^{*} \quad \text { or } \quad i=0 \tag{25}\\ -1 & \text { otherwise }\end{cases}
$$

The comomenta l_{i} associated to points $i \in P^{*}$ are expressed in terms of momenta as a discrete Fourier transform

$$
\begin{equation*}
l_{i}=-\frac{1}{2^{n-1}} \sum_{k \in P} \chi_{k}(i) j_{k} \quad \text { for } \quad i \in P^{*} \tag{26}
\end{equation*}
$$

with inverse transform

$$
\begin{equation*}
j_{k}=\frac{1}{2} \sum_{i \in P^{*} \backslash k^{*}} l_{i} \quad \text { for } \quad k \in P . \tag{27}
\end{equation*}
$$

Let us say that when we give to the β-comomenta specified values, matrix equation (15) (here $p=0$) determines sample values of the momenta j_{k}. The sample value of j_{k} for $k \in E \subset P$ is also given by equation (27), with l_{i} identified with the β-comomentum associated to cycle i. The set of equations (27) is thus an enlargement of matrix equation (15) and, since it is invertible, we can express equation (19) as follows.

Denoting by X an array of p_{n} angular momenta $j_{k}(k \in P)$, the full $p_{n}-J$ symbol $\langle X\rangle$ is defined in terms of the comomenta (26) by

$$
\langle X\rangle= \begin{cases}\frac{(-1)^{|l|}(|l|+1)!}{\prod_{i \in P^{*}} l_{i}!} & \text { if } \forall i \in P^{*} \quad l_{i} \in \mathbb{N} \tag{28}\\ 0 & \text { otherwise }\end{cases}
$$

where $|l|=\sum_{i \in P^{*}} l_{i}$. The value of the $3 n-j$ coefficient is given by the formula of hidden momenta,

$$
\begin{equation*}
\{x\}=N \sum(-1)^{t(X)}\langle X\rangle \quad(-1)^{t(X)}=\prod_{i \in P^{*}}\left(\epsilon_{i}\right)^{l_{i}} \tag{29}
\end{equation*}
$$

where N is as in equation (16) and where the sum is over the hidden momenta of the full $p_{n}-J$ symbol. The condition $\forall i \in P^{*}, l_{i} \in \mathbb{N}$ in equation (28) implies that the full $p_{n}-J$ symbol is zero if there is a line $a b c$ in P such that $j_{a} j_{b} j_{c}$ do not satisfy triangular conditions. The sum in equation (29) is thus limited by the triangular conditions associated to the $p_{n}\left(p_{n}-1\right) / 6$ lines of the projective space.

6. The projective geometry of the $N-j m$ coefficient

In this section we generalize the results of the preceding section to any N - jm coefficient with graph G. The N-jm coefficient is still described by a finite projective space (noted T), but at each point $k \in T$ are attached a momentum j_{k} with projection M_{k}, and at each point in the dual space a pair of comomenta. The geometry of the N-jm coefficient depends not only on the embedding $E \subset T$ of G, but also on a M-chain that specifies the projections m_{a} of the N-jm coefficient in terms of the M_{k} of T. We present a construction of this geometry based on a $3 n-j$ coefficient obtained by completing graph G.

6.1. The graph \bar{G}

Let us denote the f free edges of G by numbers $1,2, \ldots, f$ (with $i \equiv i+f$) and their ends by s_{i}, thus fixing an (arbitrary) cyclic order. By adding f outer edges $s_{i} s_{i+1}$, labelled with τ_{i} ($i \equiv 1,2, \ldots, f$) to graph G, we construct a trivalent graph \bar{G} that we call a completion of G. Putting $n=(g+2 f-3) / 3, \bar{G}$ is the graph of a $3(n+1)-j$ coefficient with $3(n+1)$ edges and $2(n+1)$ vertices. We call the cycle $\tau=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{f}\right\}$ of \bar{G} the outer cycle.

Example (3-j coefficient). We take the cyclic order 123 for the free edges of $G=$ figure 1 . We have $n=1$ and \bar{G} is figure 4 of the $6-j$ coefficient with outer cycle $\tau=\{4,5,6\}$.

For each open diagram $\omega \in \Omega_{a b}$ of G we define a closed diagram of \bar{G}, noted $\bar{\omega}$ and called the completion of ω, obtained by adjoining to ω the outer edges $\tau_{b}, \tau_{b+1}, \ldots, \tau_{a-1}$. Graphically, to obtain $\bar{\omega}$ from ω, we join b to a on the outer cycle going in the cyclic order. For the 3-j coefficient, the completion of the open diagram $e_{i}(i=1,2, \ldots, 6)$ in figure 6 is the closed diagram e_{i} of the 6-j coefficient in figure 5. We say that cycles of \bar{G} of the form $\bar{\omega}$ are of type α. Note that $\bar{\omega}^{\prime}=\bar{\omega}+\tau$ is also of type α and is the completion of the open diagram $\omega^{\prime} \in \Omega_{b a}$ reversed of $\omega \in \Omega_{a b}$.

We define the completion \bar{w} of a closed diagram w of G to be w itself when considered as a cycle of \bar{G}. Such a cycle \bar{w} of \bar{G} is said of type β, and cycle $\bar{w}+\tau$ of \bar{G} is said of type γ. The closed diagrams of \bar{G} are thus classified in types τ (for the outer cycle), α, β, γ and δ (for the remaining diagrams).

Figure 11. Closed diagrams of types τ, β, γ and α in the completion of figure 3.

Examples. Taking figure 9 as a completion of figure 2, figure 10 shows the outer cycle τ, the two diagrams of type δ, and one diagram of type α which is the completion of an open diagram of Ω_{32}; the remaining 11 diagrams of \bar{G} are of type α. Taking the same figure 9 as a completion of figure 3 , figure 11 shows the outer cycle τ, the only diagrams of types β and γ, and one diagram of type α which is the completion of an open diagram of Ω_{79}; the remaining 11 diagrams of \bar{G} are of type α.

We define the projective spaces P and P^{*} for \bar{G} as in section 5, but their dimension is now $n+1$ instead of n and the number of points of $P\left(\right.$ or $\left.P^{*}\right)$ is $p_{n+1}=2 p_{n}+1$ with $p_{n}=2^{n+1}-1$.

6.2. The projective space T of momenta and the M-chain F

Let T be the hyperplane of P dual to the outer cycle $\tau \in P^{*}$. By property (24), T contains all edges of G. We call T the projective space of momenta of G, and say as before that the set of edges E is embedded in T. This embedding $E \subset T$ is the same as the embedding of \widehat{G} in $P G(n, 2)$, where graph \widehat{G} is obtained by joining all f ends of G (or shrinking cycle τ of \bar{G} to a point). It is thus independent of the cyclic order of the free edges used to construct P.

The outer edges $\tau_{1}, \ldots, \tau_{f}$ of \bar{G} are identified with points of $P \backslash T$. Choosing any $t \in P \backslash T$, that we call the centre of P, we put, if $t \neq \tau_{a}, \rho_{a}=t+\tau_{a} \in T$ for $a=1,2, \ldots, f$. There are two kinds of choices of the centre t :

- The centre is different from all outer edges. We call the ordered set of the f points ρ_{a} and f lines $\rho_{a-1} \rho_{a}(a \equiv 1,2, \ldots, f)$ the (closed) M-chain $F=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{f}\right)$.
- The centre is one of the outer edges. Let us take $t=\rho_{f}$. The above F exists in $T \cup\{0\}$ with $\rho_{f}=0$. By keeping only its points and lines in T, we obtain the (open) M-chain $F=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{f-1}\right)$ of $f-1$ points and $f-2$ lines.

Free edge a of G is incident with the outer edges τ_{a-1} and τ_{a}, so that $a=\rho_{a-1}+\rho_{a}$, which means that the M-chain has the following property:
free edge a of G is the third point on line $\rho_{a-1} \rho_{a}$ of the M-chain. For an open M-chain, the beginning ρ_{1} (resp. ending ρ_{f-1}) of the M-chain is identified with free edge 1 (resp. f) of G.

Example (3-j coefficient). The first case occurs when we take t at j_{7}. The closed M-chain is ($1,2,3$) with free edge 1 (resp. 2, 3) being the third point on line 23 (resp. 31, 12). The second case occurs for the other choices of the centre. For t at j_{4}, the open M-chain $(3,2)$ is shown in equation (8).

6.3. The projective space T^{*} of comomenta

Let T^{*} be the hyperplane of P^{*} dual to the centre $t \in P$. Considering T and T^{*} as dual projective spaces $P G(n, 2)$ of dimension n, we call T^{*} the projective space of comomenta of G. At point $i \in T^{*}$, we have already comomentum l_{i} of P^{*}, which we call upper comomentum of T^{*}. We also associate to $i \in T^{*}$ the lower comomentum $l_{i}^{\prime}=l_{\tau+i}$, which is the comomentum in P^{*} at the third point on line τi. The types (α, β, γ or δ) of these upper and lower comomenta are the types of the corresponding cycles in P^{*}.

At point $k \in T$, we already have momentum j_{k} of P. We also associate to k a projection

$$
\begin{equation*}
M_{k}=j_{t+k}-j_{t} \tag{31}
\end{equation*}
$$

which is the difference of the momenta at point $r=t+k$ in $P \backslash T$ (the third point on the line joining k to the centre) and at the centre. The triangular conditions $j_{k} j_{r} j_{t}$ imply that $j_{k} M_{k}$ satisfies projection conditions.

For $k \in T$, the discrete Fourier transform expressing the momenta in terms of comomenta is (see the appendix):

$$
\begin{align*}
& j_{k}=\frac{1}{2} \sum_{i \in T^{*} \backslash k^{*}}\left(l_{i}+l_{i}^{\prime}\right) \tag{32}\\
& M_{k}=\frac{1}{2} \sum_{i \in T^{*} \backslash k^{*}}\left(l_{i}-l_{i}^{\prime}\right) \tag{33}
\end{align*}
$$

with inverse transform for $i \in T^{*}$:

$$
\begin{align*}
& l_{i}=-\frac{1}{2^{n}} \sum_{k \in T} \chi_{k}(i)\left(j_{k}+M_{k}\right) \tag{34}\\
& l_{i}^{\prime}=-\frac{1}{2^{n}} \sum_{k \in T} \chi_{k}(i)\left(j_{k}-M_{k}\right) \tag{35}
\end{align*}
$$

Let us now show that we can identify which comomenta $l_{i} l_{i}^{\prime}$ of types α and β are associated to closed and open diagrams of G only from the embedding $E \subset T$ and the M-chain F. Using property (24), we obtain the following, which proves also that the $2^{n+1}(f-1)$! arbitrary choices (cyclic ordering of the f free edges, choice of the centre among 2^{n+1} points) in the construction of T and T^{*} are completely encoded by the M-chain F :

- If $i=\bar{w} \in T^{*}$ is the completion of a closed diagram w of G, then $E \backslash i^{*}$ is the set of edges of w. The upper comomentum l_{i} is then associated to w and the lower comomentum l_{i}^{\prime} is of type γ. Note that, since the completion of any closed diagram of G is in T^{*}, comomenta of type β are always upper comomenta.
- If $i=\bar{\omega} \in T^{*}$ is the completion of an open diagram $\omega \in \Omega_{a b}$ of G, then $E \backslash i^{*}$ is the set of edges of ω and $F \backslash i^{*}$ is the open chain $\rho_{b} \rho_{b+1} \ldots \rho_{a-1}$. Comomentum l_{i} is then associated to ω and l_{i}^{\prime} to the reversed open diagram ω^{\prime}.

We also denote the comomenta of types α and β by $\left(\alpha_{i}\right)_{1 \leqslant i \leqslant p}$ and $\left(\beta_{i}\right)_{p<i \leqslant p+q}$, labelled accordingly to the above associations, and those of types γ and δ by $\left(\gamma_{i}\right)_{p+q<i \leqslant p+2 q}$ and $\left(\delta_{i}\right)_{p+2 q<i \leqslant 2 p_{n}}$, labelled arbitrarily ($\alpha \beta \gamma \delta$ notation for comomenta).

Example (3-j coefficient). When we take the centre t of P at j_{4}, T^{*} is the comomentum line $e_{1} e_{5} e_{6}$. The ordered pair of comomenta $l_{i} l_{i}^{\prime}$ at e_{1} (resp. e_{5}, e_{6}) is the pair $\alpha_{1} \alpha_{4}$ (resp. $\alpha_{5} \alpha_{2}$, $\alpha_{6} \alpha_{3}$) as pictured in equation (9). Equations (34) and (35) give equation (4).

6.4. The formula of hidden momenta

Let us give specified values to $\left(\alpha_{i}\right)_{1 \leqslant i \leqslant p}$ and $\left(\beta_{i}\right)_{p<i \leqslant p+q}$ and so to comomenta of P^{*} of types α and β. We call, as before, sample values the values of momenta j_{k} and projections m_{a} of the N-jm coefficient that result from matrix equation (15). We put $l_{i}=0$ for the comomenta of P^{*} of types γ and δ. All upper and lower comomenta of T^{*} have then specified values. We use these comomenta of P^{*} (with an arbitrary value for comomentum l_{τ} at the outer cycle) in equation (27) to compute the momenta at edges of \bar{G}. The sample value of j_{k} at edge k of G is the same as momentum at edge k of \bar{G} and the sample value of m_{a} on free edge a of G is given by $j_{\tau_{a}}-j_{\tau_{a-1}}$, the difference of momenta on the outer edges τ_{a} and τ_{a-1} of \bar{G} adjacent to a. The sample value of j_{k} at edge k of G is thus given by equation (32). The sample value of m_{a} is related to the projections M_{k} (defined by equation (31) and given by equation (33)) at points of the M-chain. If the M-chain is closed,

$$
\begin{equation*}
m_{a}=M_{c}-M_{b} \tag{36}
\end{equation*}
$$

where $b=\rho_{a-1}$ and $c=\rho_{a}$ are collinear with a by property (30). If the M-chain is open, with beginning $d=\rho_{1}$ and ending $e=\rho_{f-1}$, equation (36) is replaced by

$$
\begin{equation*}
m_{d}=M_{d} \quad m_{e}=-M_{e} \tag{37}
\end{equation*}
$$

for free edges d and e in G.

Example (3-j coefficient). When we take the centre t of P at j_{7}, the projections M_{k} are defined from

$$
\begin{equation*}
M_{1}=j_{4}-j_{7} \quad M_{2}=j_{5}-j_{7} \quad M_{3}=j_{6}-j_{7} \tag{38}
\end{equation*}
$$

and the closed M-chain $(1,2,3)$ corresponds to relations

$$
\begin{equation*}
m_{1}=M_{3}-M_{2} \quad m_{2}=M_{1}-M_{3} \quad m_{3}=M_{2}-M_{1} \tag{39}
\end{equation*}
$$

When we take the centre t of P at j_{4}, the projections M_{k} are defined from

$$
\begin{equation*}
M_{1}=j_{7}-j_{4} \quad M_{2}=j_{6}-j_{4} \quad M_{3}=j_{5}-j_{4} \tag{40}
\end{equation*}
$$

and the open M-chain (3, 2) corresponds to relations (3).
The system of equations (32) and (33) is thus an enlargement of the matrix equation (15). It defines an array X of $2 p_{n}$ values of momenta and projections $\left(j_{k} M_{k}\right)_{k \in T}$ associated with the p_{n} points of the projective space T for a specified set of comomenta. We call hidden momenta the j_{k} that do not correspond to edges in G. The projections M_{k} on the M-chain are related to the projections m_{a} of the N - jm coefficient by equations (36) and (37). In the case of an open
M-chain, these $f-1$ projections are completely determined (they are visible projections). In the case of a closed M-chain, these f projections form a set with one hidden projection (any one of them). The remaining M_{k}, at points not in the M-chain, are also called hidden projections. It can surprisingly happen that at free edge k (where $j_{k} m_{k}$ are known) projection M_{k} is hidden.

Example (3-j coefficient). When we take the centre t of P at j_{4}, the open M-chain is $(3,2)$. There is only one hidden projection M_{1}. The system of equations (32) and (33) is an enlargement of equation (21) (with $M_{2}=-m_{2}$ and $M_{3}=m_{3}$) containing the additional equation for hidden projection M_{1} :

$$
\begin{equation*}
M_{1}=\left(-\alpha_{2}-\alpha_{3}+\alpha_{5}+\alpha_{6}\right) / 2 \tag{41}
\end{equation*}
$$

The inverse of the system of equations (21) and (41) is the system of equations (4) (which are the same as equations (34) and (35)).

For arbitrary values of momenta j_{k} and projections M_{k} in array X, we calculate the $2 p_{n}$ comomenta of T^{*} by equations (34) and (35). The full $p_{n}-J M$ symbol $\langle X\rangle$ is defined by, using the $\alpha \beta \gamma \delta$ notation for comomenta,
$\langle X\rangle= \begin{cases}\frac{(|\alpha|+|\beta|+1)!}{(|\alpha|+1)!} \frac{(-1)^{|\alpha|+|\beta|}}{\prod_{i=1}^{p} \alpha_{i}!\prod_{i=p+1}^{p+q} \beta_{i}!} & \begin{array}{l}\text { if all } \alpha_{i}, \beta_{i} \in \mathbb{N} \\ \text { and all } \gamma_{i}=0, \delta_{i}=0 \\ 0\end{array} \\ \text { otherwise }\end{cases}$
We rewrite equation (19) as the formula of hidden momenta: the value $\{x\}$ of the N - jm coefficient is

$$
\begin{equation*}
\{x\}=N \sum(-1)^{t(X)}\langle X\rangle \quad(-1)^{t(X)}=\prod_{i=1}^{p}\left(\epsilon_{i}\right)^{\alpha_{i}} \prod_{i=p+1}^{p+q}\left(\epsilon_{i}\right)^{\beta_{i}} \tag{43}
\end{equation*}
$$

where N is given by equation (16) and where the sum is over the hidden momenta and hidden projections of the full $p_{n}-J M$ symbol.

The sum in equation (43) is limited by triangular conditions $j_{a} j_{b} j_{c}$ (for each line $a b c$ in T), as in equation (29) for the $3 n-j$ coefficient, and by projection conditions $j_{k} M_{k}$ (for each point $k \in T$). The conditions $\gamma_{i}=0, \delta_{i}=0$ in equation (42) have the effect of imposing $2 p_{n}-p-q$ relations between hidden momenta and projections. If we want to determine a set of independent hidden momenta and projections, for each pair of conditions $l_{i}=l_{i}^{\prime}=0$ at a cycle $i \in T^{*}$ of type δ, we remove one hidden momentum and one hidden projection and for each condition $\gamma_{i}=0$, we remove one hidden projection. The total number K of independent hidden momenta and projections is given by equation (20).

In the case of a $3 n-j$ coefficient, the above construction remains valid when we take for the outer cycle τ added to G a loop disconnected from G. All comomenta come in pairs of type $\beta \gamma$ so that conditions $\gamma_{i}=0$ impose $M_{k}=j_{k}$ for all projections. The simpler geometry of the $3 n-j$ coefficient is recovered by ignoring the γ comomenta and the projections.

Each choice of the M-chain gives slightly different, but algebraically equivalent, formulae (the assignments of $\alpha_{\kappa}, \beta_{\kappa}$ to $l_{i} l_{i}^{\prime}$ and of m_{a} to M_{k} depend on the M-chain).

7. Concluding remarks

We have presented an interpretation of the combinatorial formula for the N-jm coefficients in terms of hidden angular momenta j_{k} and projections M_{k}. It is quite puzzling that the projections m_{a} of the $N-j m$ coefficient appear only indirectly through the projections M_{k} as specified by

Figure 12. Representation of the 3 -JM symbol in Euclidean geometry.

Figure 13. Partition $P^{*}=A \cup B \cup C \cup d^{*}$.
a M-chain. The comomenta, in the case of the $3 n-j$ coefficient, have been interpreted as occupation numbers in [15], but the physical interpretation of hidden angular momenta and projections is an open question.

We have drawn (figure 12) in three-dimensional Euclidean space the momenta and projections that take part in the construction of the projective space for the 3-j coefficient: length $[B D]=j_{5}$, length $\left[B B^{\prime}\right]=M_{2}, \ldots$ The seven triangular conditions of P represented by collinearities in figure 8 now appear as triangles (triangle $j_{1} j_{2} j_{3}$ appears four times). When we take the centre t of P at j_{7}, the M-chain is $(1,2,3)$, the projections M_{k} are defined by equation (38) and the projections m_{a} by equation (39). The three points and three lines in the M-chain are pictured as the three edges and three faces adjacent to O in tetrahedron $O A B C$. We finally consider a limit case in the spirit of Ponzano and Regge [19]. OABC are kept fixed and D goes to infinity in the vertical direction. The projections M_{k}, m_{k} become genuine geometric projections of j_{k} on the vertical direction. In [19], this limit is used to obtain the $3-j$ coefficient, pictured by the shaded triangle $A B C$, from the $6-j$ coefficient, pictured by tetrahedron $A B C D$.

Appendix. Derivation of discrete Fourier transforms between momenta and comomenta

The dual hyperplanes in P^{*} of t, r and k are $T^{*}=t^{*}=A \cup d^{*}, r^{*}=B \cup d^{*}$ and $k^{*}=C \cup d^{*}$, where A, B, C, d^{*} is a partition of P^{*} and where d^{*} is the $(n-1)$-dimensional projective subspace dual to line $t k r$ (see figure 13). Note that $\tau \in C$. From equation (27)

$$
\begin{equation*}
j_{k}=\frac{1}{2} \sum_{i \in A \cup B} l_{i}=\frac{1}{2} \sum_{i \in A}\left(l_{i}+l_{i+\tau}\right)=\frac{1}{2} \sum_{i \in T^{*} \backslash k^{*}}\left(l_{i}+l_{i}^{\prime}\right) \tag{44}
\end{equation*}
$$

which proves equation (32). Also from equation (27)

$$
\begin{equation*}
j_{r}=\frac{1}{2} \sum_{i \in A \cup C} l_{i} \quad j_{t}=\frac{1}{2} \sum_{i \in B \cup C} l_{i} \tag{45}
\end{equation*}
$$

so that

$$
\begin{equation*}
M_{k}=\frac{1}{2} \sum_{i \in A} l_{i}-\frac{1}{2} \sum_{i \in B} l_{i}=\frac{1}{2} \sum_{i \in A}\left(l_{i}-l_{i+\tau}\right)=\frac{1}{2} \sum_{i \in T^{*} \backslash k^{*}}\left(l_{i}-l_{i}^{\prime}\right) \tag{46}
\end{equation*}
$$

which proves equation (33).
The inverse transform, equations (34) and (35) results from properties of characters as in the case of the $3 n-j$ coefficient.

References

[1] Bargmann V 1962 On the representations of the rotation group Rev. Mod. Phys. 34 829-45
[2] Biedenharn LC and Louck J D 1981 The Racah-Wigner algebra in quantum theory Encyclopedia of Mathematics and its Applications vol 9 (Reading, MA: Addison-Wesley)
[3] Biggs N 1974 Algebraic Graph Theory (Cambridge: Cambridge University Press)
[4] Bollobás B 1998 Modern Graph Theory (New York: Springer)
[5] Brink D M and Satchler G R 1968 Angular Momentum 2nd edn (Oxford: Oxford University Press)
[6] Conway J H (assisted by Fung F Y C) 1997 The sensual (quadratic) form Carus Mathematical Monographs (Washington, DC: Mathematical Association of America)
[7] Elbaz E and Castel B 1972 Graphical Methods of Spin Algebras in Atomic, Nuclear and Particle Physics (New York: Marcel Dekker)
[8] Fairlie D B and Ueno T 1998 Integrable top equations associated with projective geometry over \mathbb{Z}_{2} J. Phys. A: Math. Gen. 31 7785-90
[9] Fano U and Racah G 1959 Irreducible Tensorial Sets (New York: Academic)
[10] Holton D A and Sheenhan J 1993 The Petersen Graph (Cambridge: Cambridge University Press)
[11] Jucys A P and Bandzaitis A A 1965 Teoriia Momenta Kolichesttva Dvizheniia v Kvantovoi Mekhanike (Vilnius: Mintis)
[12] Kauffman L H 1991 Knots and Physics (Singapore: World Scientific)
[13] Kauffman L H and Lins S L 1994 Temperley-Lieb recoupling theory and invariants of 3-manifolds Annals of Mathematics Studies (Princeton, NJ: Princeton University Press)
[14] Labarthe J J 1975 Generating functions for the coupling-recoupling coefficients of $S U$ (2) J. Phys. A: Math. Gen. 8 1543-61
[15] Labarthe J J 1998 The hidden angular momenta of Racah and $3 n-j$ coefficients J. Phys. A: Math. Gen. 31 8689-708
[16] Levinson I B 1957 Sums of products of Wigner coefficients and their graphical representations Tr. Fiz-Tekh. Inst. Akad. Nauk Litobsk. SSR 2 17-30
[17] Moussouris J P 1979 Advances in Twistor Theory ed L P Hughston and R S Ward (London: Pitman) pp 308-12 and 313-17
[18] Penrose R 1979 Advances in Twistor Theory ed Hughston L P and Ward R S (London: Pitman) pp 301-7
[19] Ponzano G and Regge T 1968 Semiclassical limit of Racah coefficients Spectroscopy and Group Theoretical Methods in Physics ed F Bloch (Amsterdam: North-Holland)
[20] Racah G 1942 Theory of complex spectra II Phys. Rev. 62 438-62
[21] Regge T 1958 Symmetry properties of Clebsch-Gordan's coefficients Nuovo Cimento 10 544-5
[22] Robinson G De B 1970 Group representations and geometry J. Math. Phys. 11 3428-32
[23] Tutte W T 1966 On the algebraic theory of graph colourings J. Comb. Theory 1 15-50
[24] Varshalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore: World Scientific)
[25] Yutsis A P, Levinson I B and Vanagas V V 1962 The Theory of Angular Momentum (Jerusalem: Israel Program for Scientific Translations)

