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Abstract. Afinite projective geometr§’ = PG(n, 2) is associated with any coupling—recoupling
(N-jm) coefficient ofSU (2). This geometry is based on a duality of projective spaces and a discrete
Fourier transform. An angular momentuinwith projectionM; is attached at each poikte T.

Some of these momenta and projections are specified by the argument¥y ef theoefficient. The
others are qualified as hidden. The value ofshgm coefficient is given in terms of a summation
over the hidden angular momenta and hidden projections of apfulf M symbol’ with a high
degree of symmetry. For the Beoefficient (Clebsch—Gordan or Wigner coefficient), the finite
projective geometry is a line of three points with one hidden projection and the formula of hidden
momenta gives an interpretation of the combinatorial formula of Racah for jheo@f{ficient.

1. Introduction

The angular momentum graphs introduced by Levinson and Yetsa$ [16, 25] describe

the various coupling—recouplingv¢ jm) coefficients ofSU (2). In these graphs, momenta

are associated with edges and triangular conditions with vertices. Tutte [23] considered the
embedding of a general graph in finite projective spaces in connection with the theory of graph
colourings. This embedding applied to the angular momentum graphs- pfcefficients
reproduces the geometric description of the j3coefficient in the finite projective space

P = PG(n, 2) that has been considered by Robinson [22]: momenta are associated with
points and triangular conditions with collinearity of points. Descriptionsmefj Zoefficient

in real projective spaces have been considered by Fano and Racah ([9], appendices; see also
Biedenharn and Louck [2]).

A set of graphical theorems [25] gives practical methods for computingMhian
coefficients from 3j and 6+ coefficients. In [14], a combinatorial formula for thé-jm
coefficient was derived by a generating function approach based on spaces introduced by
Bargmann [1] (for a more recent approach, the chromatic method of evaluating Penrose spin
networks, see [12,13,17,18]). Though this formula does not provide an efficient method for
computing theN-jm coefficients, it has the interest of being in a combinatorial form that
generalizes formulae of Racah [20] for thg 2nd 65 coefficients. In [15], we introduced,
for a 3u-j coefficient, hidden angular momenta at pointadnd a discrete Fourier transform
between momenta and ‘comomenta’ used in the combinatorial formula of thie8efficient.

Similar Fourier transforms occur in Conway (assisted by Fung) [6] and in Fairlie and Ueno [8].
We then derived the ‘formula of hidden momenta’ that gives the value ofithe®efficient
in terms of a sum over the hidden momenta of a fp)|-J symbol’. For the 65 coefficient,
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764 J-J Labarthe

there is one hidden momentum and the formula is equivalent to the combinatorial formula of
Racah ([20], equation (36)).

These results are extended in this paper tosnym coefficient ofSU (2). We define a
finite projective geometry = PG (n, 2), with hidden angular momenta and hidden projection
momenta. The value of th&¥-jm coefficient is given by a formula of hidden momenta. For
the 3+ coefficient, this formula is algebraically equivalent to the formula of Racah ([20],
equation (16))

o o —1y¢
< /1 /2 /3 ) - 8m1+m2+m3,0N(_1)J17]27ms Z ( )
z

my mp m3 (j3—j1—m2+z)!

SS— . L _ M
(Jjs— jotmi+ (ot mo = D)1 —m1— D1+ jo — ja — 2)!
wherez runs over values such that all factorials have argumenits(we use the notatioly
for the set of natural integef§, 1, 2, ...}) and whereV is a normalizing factor that will be
given below in equation (16). Equation (1) becomes the formula of hidden momenta when the
sum overz is changed to a sum ovéf; by putting

7 =[(j1 — My) + (jo — M) — (jz — M3)]/2 (2

and
my = My — M3 my = —M> m3 = Ms. 3)
The arguments of the factorials in equation (1) are transformed into

a1 = [—(j1+ M) + (jo + M) + (jz + M3)]/2
oz = [(j1— M1) — (jo — M) + (jz — M3)]/2
az = [(j1 — M1) + (jo — M2) — (jz — M3)]/2
ag = [—(j1— M) + (jo — M) + (jz — M3)]/2
as = [(j1+ My1) — (j2+ M) + (jz + M3)]/2
ag = [(j1+ M) + (jo + M2) — (jz+ M3)]/2

which we call comomenta of the B-coefficient. Equation (4) between comomenta and
momenta appears as a discrete Fourier transform. Defining a fuld 3ymbol

(4)

(_ 1)0(1+(x2+a3+(x4+a5+(x5

<j1 j2 j3>_ e ad o] if oeN for i=12...,6
= aotazioglasiag!
My Mz Mg 0 otherwise

(6)

equation (1) reads
i J2 s astastas | J1 J2 3
=N —1)xatastas . 6
(ml ma m3> %:( ) <M1 M> M3> ®6)

NumberM; has to take values withinthe det j1, —j1+1, ..., j1—1, j1} otherwise the 3f M
symbol of equation (5) is zero. So we interpiét as a projection of; (we sayji; M, satisfy
projection conditions Equation (6) is the formula of hidden momenta for thg &efficient.

The full 3-7 M symbol (5) has a high degree of symmetry. Itis invariant in the-&20
permutations of the comomenta. For the sum in equation (6), there remain the 72 symmetries
of the 3-j coefficient (Regge [21]).
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Geometrically, the momenta and projections are defined omtmeentum lin®? G (1, 2)
which contains only three points:

j1 My Jo My ja My

° °® ® (7

A momentumj, and its projectionM; are associated to poidt = 1, 2 or 3, and the line
expresses that j» j3 satisfy triangular conditions. There is only one hidden projection (we
can take any one dif;, M, or M3). Equation (3) is represented geometrically by Miechain

(3, 2) consisting of two ordered points, 3 and 2, and of one line 32:

. M in M in M
M o2 I3
N\ ®)
The comomenta are defined on a dcanomentum line
a, a a- a, o
1‘ 4 5' 2 6‘ 3 ©)

with a pair of comomenta at each point.

Here is the plan of our exposition. The geneMajm coefficient is defined from its
angular momentum grapi (section 2). We then review the diagrams drawrGofsection 3),
the combinatorial formula (section 4) and the projective geometry of th¢ 8oefficient
(section 5). We have then the elements and notations to construct the projective geometry of
the N-jm coefficient (section 6).

2. Angular momentum graphs

The angular momentum graphepresent thev-jm coefficients. Various versions of these
graphs have been considered [5,7,11, 16, 24, 25]. We shall use the following simple variant.
i J2 J3
my mz m3
building block. The sign=) at the vertex indicates the cyclic order of the momenta in thie 3-
symbol. An angular momentum graph is obtained from these building blocks by a sequence
of contractions A contraction corresponds to a summation of the form

ey (<l (). 0o

Letting L and R be the graphs of the 3- coefﬁments( ;1 > and "'_Jn'q" )

respectively, the contraction is represented by joining the eggssL andR by an arrow
going fromL to R. For example the 4m coupling coefficient

i 2 3 Js—ms J2 Js 3 ja Js
(m]_ myp; ms3a m4> Z( 1) < nmy I’I’l5) (I’)’Lg nmay —m5) (11)

ms

The 3-j coefficient is represented by figure 1 which serves as the basic

is represented by figure 2.
The most general grapti so obtained is a trivalent graph (three edges meet at each of the
v vertices) withh componentsy free edgefinked to one vertex only anglbound edgeknked
to vertices at each extremity (when the extremities are linked to the same vertex, the edge is a
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/21y

j3m3

Figure 1. The 3+ coefficient. Figure 2. A 4-jm coupling coefficient.

Ia

Figure 3. A 3-jm coupling—recoupling coefficient. in i
g Jm coupling ping Figure 4. The 6 coefficient{ j/‘l ‘J’? ‘J’.3 }
4 J5 Je

loop). Each edge is labelled with an angular momentuatcompanied by its projection

in the case of a free edge. The graph is decorated with arrows on bound edges (changing the
direction of an edgg multiplies the coefficient by—1)%/) and+ signs at vertices (changing

the sign of a vertex wherg j, jz meet multiplies the coefficient by—1)2"/2*73), We are
considering only coefficients whose projections add up to Zete:(= 0), so that we do not
decorate the free edges of the graphs. Usually, we are interested in connectedigeadis (
Coupling coefficients are then representedtiees as in figure 2. We have a coupling—
recoupling coefficient as in figure 3 when the graph tie=uits and a &-; coefficient when

the graph has no free edge as in figure 4. We use the maywa coefficient for the most
general graph (includingi3j) and 35m (4-jm) coefficients for graphs with 3 (4) free edges.

3. The open and closed diagrams

In this section, we define subsets of edge& dhat are used to express the value of shgm
coefficient. The following presentation is an adaptation to our needs of the definition of cycles
by Tutte [23] (see also Holton and Sheenhan [10]).

Let E be the set of edges of gragh. For figure 3,E = {1, 2,5, 6,7, 9} where we
designate the edges by integers. Hage space& of the graph is the vector space over the
2-element fieldF, = {0, 1} of functionsE — F,. The support of a functiow € £ is the
subsetW C E of the edgeg € E such thatw(e) = 1. We shall not distinguish between a
function and its support. The sum of two edge sub%$étsv’ C E is then their symmetric
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€1 € €3

64 85 €6 87 =T

Figure 5. The closed diagrams of the Beoefficient.

difference(W U W) \ (W N W').

Let V be the set of vertices of grapght. For figure 3,V = {vs, v7, vg} Whereuv, is the
vertex incident with free edge We associate with each free edge a supplementary 1-valent
vertex placed at the unlinked extremity of the edge and callexhidsWe obtain in this way a
graphG’ with v + f vertices ang; + f edges. Its edge space can be identified with the edge
spacef of G. Thevertex spac# is the vector space ovél, of functionsV’ — F, from the
set of verticed/’ of G’ to [F,. Similarly as for the edge space, we do not distinguish between
a functiong € V and the subset df’ which is the support o.

Leta € E be an edge iy or G’ ands, s’ € V' be theendvertice®f a, that is the vertices
in G’ incident witha. We haves = s whena is a loop. Lettingw, € £, ¢, € V, ¢y € V
correspond respectively to the subdetsC E, {s}, {s'} C V', we can define a linear function

£ % v such that
dw, = @5 + @y (12)
This functiond gives the endvertices of an edge, or, more generally, of a subset of edges. For

example, if the endvertices of edgeares’ ands”, the subseta, b} € E corresponding to
wy, = w, +wy € £ form a path with two extremitiesands” given by

Owgp = 0w, + 0wy = (@5 + @) + (P + @) = @5 + . (13)

A cycleof graphG is a subset of edges € & such thatow = 0. The connected
components of a cycle are calleticuits. In other words, a cycle is a subset of edges that is
a union of any number of disjoint circuits. For thej&oefficient, there are & 23 cycles,
the seven cycles represented in figure 5 and the empty satdtheyclg. Note that we have
changed the labelling of [15] for these cycles. Given two cyeles, and scalara;, 1, € F»,
the linear combinatione; + Aze; is a cycle: the cycles form theycle-subspacé of £. The
dimension ofC for graphG is g — v + h ([3,4]). The non-zero cycles, also calletbsed
diagrams form the set \ {0} of ¢ = 2¢~v*" — 1 elements.

For two different free edges and b, with respective ends, ands, (that we identify
with elements of)), anopen diagram of type — b is a subset of edges € &, such that
dw = s, +s,. We distinguish open diagrams of types—> b andb — a corresponding to
the samev € &, and call thenreversed diagramsin other words, we can think of an open
diagram of type: — b as a subset of edges formed of the disjoint union of one oriented path
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NN
AN

Figure 6. The open diagrams of the Beoefficient.

going from edge to b, that we callbopen pathand any number of circuits. We denoteQy;,
the set of open diagrams of type— b. If a andb are in different components of grajgh
there is no open diagram of type— b and,; is empty. Otherwise, i, »" € Q,, then
w — o' is a cycle and2,, is an affine subspace éfcontaining 2-"*" elements. The set of all
open diagrams2 contains, in the case of a connected grapks f(f — 1)2¢~V*! elements.
For the 35 coefficient, there are six open diagrams, represented in figure 6 and deneted by
es, ...,es. There are three pairs of reversed diagraas; es), (e2, es) and(es, eg).

For a connectedr3j coefficient ¢ = 2n, f = 0, g = 3n, h = 1), the dimension of is
n+1, there argg = 2"*! — 1 closed diagrams and no open diagram= 0).

For a connected coupling coefficient withcouplings f = v+2,g = v —1,h = 1),
there arep = (v + 2)(v + 1) open diagrams and no closed diagram (disz 0, ¢ = 0).

4. The combinatorial formula

In this section we review the combinatorial formula of tNejm coefficient [14], which is
based on the open and closed diagramé& ofVe follow a presentation similar to the one we
used in [15] for the combinatorial formula of the-3 coefficient. We say that a vertex 6f

is a vertex of diagran; if it is incident with edges oé;. To each diagrarg; is associated a
signe; = +£1 computed by the following rules:

(i) Orient all circuits ofe; in an arbitrary fashion.
(i) Multiply the factors:

e ateach vertex of;, a factor of +1 if the order of the edges is (incoming edge, outgoing
edge, third edge) and1 otherwise:

YYYY
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e on each bound edge ef, a factor of +1 if the directions of the edge and diagram are
opposite or-1 if they are the same:

< == ==

+1 -1
e by a factor of—1 for each circuit.

There is an even (resp. odd) total number of edges and vertices on a circuit (resp. open path).
The sign of a diagram is thus independent of the orientations chosen on the circuits. The signs
of reversed open diagrams are opposite.

Examples. For the 65 coefficient (figures 4 and % = 1 for all closed diagrams; for the
3-j coefficient (figures 1 and &) = €, = €3 = 1 andeg = €5 = €5 = —1.

To each set of values of momenta in a coupling—recoupling coefficient we associate an
juoJ2 J3 ] to

arrayx of these values. For example, we associate the3arrayx = [m i m
1 2 3

the 3+ coefficient( n]; rf ;7]13 ) We denote byr the space of arrays like these when the
1 2 3

entries are integers or half-integers that satisfy the triangular and projection conditions of the
N-jm coefficient. We denote bfy} the value of the coefficient associated to array R.
For arrays inR, we have the usual addition and multiplication by a scalar N. For
P
example, in the case of the Beoefficient, ifx’ = []1/ J2 U3
my mp mjg
[ Argi fe*ia JstUs | anday = [ M2 A2 M
mi+my mp+tm, m3ztmg Amq Amp Amg
x,x' € R,» e Nthenx +x’ € R, Ax € R (R is closed under addition and multiplication by a
non-negative integer scalar).

To each diagrane; we associate an array iR corresponding to momenta éfon the
edges ofe;, and, ife; € Qgp, With projection% (resp. —%) on free edge (resp. a). The
remaining momenta and projections are zero. To simplify notations, these eleménésef
denoted by the same name as the diagrams. They are fortloeé&fficient:

} we havex + x' =

. Itis easy to see that if

1 1 1 1 1 1
=0 2 2 |12 0 3 | 2 3 0
o -1 1 2 1 9 _1 3 _1 19
2 2 2 2 2 2
1 1 1 1 1 1 (14)
RSt IRSEY
0 3 —3 -3 0 3 3 =3 0
Each element € R can be decomposed over thgse ¢ arrayse; € R (i = 1,2,...,p
corresponds to the open diagrams and= p+ 1, p+2,..., p + g corresponds to the
closed diagrams) as
P P*q
x=) ety pe i, B € N. (15)
i=1 i=p+l

We calle; (resp. ;) the - (resp. 8-)] comomentunassociated te;. In casep or g is zero,

the corresponding sum is omitted in equation (15). Since the a#raye not independent in

R, decomposition (15) is not unique in general, but the number of different decompositions is
always finite because the comomenta have to be non-negative integers.
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The normalizing factow of the coefficient is the product of the triangle factaxg,. of
thewv couplings ¢, b, c) (one for each vertex) and of thefree edge factord/;,, (one for each

free edge):
N = 1_[ Aabc 1_[ ij (16)
(a,b,c) (j,m)
Ay — (a+b—c)(b+c—a)l(c+a—b\"? a”)
(atb+c+ 1!
Nim = ((j +m)!(j —m)HY2. (18)
The value of the coefficient is expressed as (see [14], equation (16))
(ol + 18] + D! {1 (—e)™ TF (=€)
=N 19
=N 11 o! ,.:111 B! (19)
where the sum is over the decompositions (15) of comomenta and whete| = Y"/_; «;,
1Bl = 3020 B
Equation (19) is & -fold summation, where
K=p+qg—1 (20)

is the difference between the numhet ¢ of comomenta and the numbgiof independent
momenta and projections. For a connectegZoefficient( = g = 3n, p = 0,9 = 2"*1—1)
K = 2"*1_1—3n. For a connected coupling coefficient witltouplings p = (v+2)(v+1),
g = 0), since the projections have suml= p — (g +2f — 1) = v2

Example (3-j coefficient). In the case of the 3- coefficient, decomposition (15 =
Z?:l a;e;, wherethe; € R are given by equation (14), expresses the momenta and projections
of the 3+ coefficient corresponding to a set of values of the comomenlac; <s as

Ji=( tap+tasz +oas+ap)/2

Jo= (a1 taztas toap)/2

Ja=(Fartay +agtas )/2

(21)
mp=( +ap—az3 —as+ag)/2
my= (-1 +oaztas —oag)/2
mg=(+a; —az —ogtas )/2.

The value of the 3 coefficient, equation (19), reads

. . . (_1)a1+a2+a3
Ju o J2 J3 ) _ N Z (22)
mi mz mg arlaslaslaglas!og!

whereN = Aj j,jsNjm Njom, Njzm, @nd where the sum is over the sets of comomenta with
values inN satisfying the set of equations (21). Solving equations (21) for the comomgnta
in terms of jy, jo, j3, m1, my andz = a3 and using these expressions in equation (22) gives
Racah’s formula (1).

5. The projective geometry of the 3-5 coefficient

Inthis section we review results of [15] for the-3 coefficient. We assume for simplicity graph
G to be connected and without cuts on one or two edges. The projectiveRpaed G (n*, 2)
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ey & % Is

Figure 7. The Fano plane of comoment for the 6-j  Figure 8. The Fano plane of moment& for the 6-j
coefficient. coefficient.

is identified withC \ {0}, the set of they, = 2*** — 1 closed diagrams of the:3j coefficient.
In the dual projective space = PG (n, 2), 3n points are identified with edges 6f by

edgek € G is identified with poink € P such that the

23
2" cycles that contain eddeare the points oP* \ k* (23)

where we denote by* C P* the dual hyperplane df. We also denote b c P the set of

the points identified as edges 6f We call E the embedding o&; in P. When three edges
of G are incident at one vertex, the corresponding point® iare collinear. By duality of
property (23) we have

the set of edges of cyclee P*is E \ i* (24)

wherei* C P is the hyperplane dual to Hidden momenta are associated with fhe— 3n
points of P \ E. For the 65 coefficient these projective spaces are Fano planes (figures 7
and 8) with one hidden momentuyp.

For each poink € P, we denote byj, the associated visible (already @) or hidden
momentum and by, the irreducible character of the Abelian gratiplefined by

o) 1 if iek* or i=0 (25)
A ] otherwise.

The comomentg associated to pointse P* are expressed in terms of momenta as a
discrete Fourier transform

1
=5 ]; x@je  for iep (26)
(S

with inverse transform

=% for ke P. (27)
i€P*\k*

Let us say that when we give to tifecomomentapecified valugsnatrix equation (15) (here

p = 0) determinesample valuesf the momentg,. The sample value of, fork € E C P

is also given by equation (27), withidentified with theg-comomentum associated to cycle

i. The set of equations (27) is thus an enlargement of matrix equation (15) and, since it is
invertible, we can express equation (19) as follows.
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Denoting byX an array ofp, angular momentg, (k € P), the full p,-J symbol(X) is
defined in terms of the comomenta (26) by

=D+ D! e pa
(X) _ W if VieP l,’ eN (28)
0

otherwise

wherel|l| = Y, p. ;. The value of the 3-; coefficient is given by the formula of hidden
momenta,

B =NY DO DY =" (29)
ieP*
whereN is as in equation (16) and where the sum is over the hidden momenta of thg-full
symbol. The conditiowi € P*, [; € N in equation (28) implies that the ful,-J symbol is
zero if there is alinebc in P such thatj, ji, j. do not satisfy triangular conditions. The sumin
equation (29) is thus limited by the triangular conditions associated tp,ths — 1)/6 lines
of the projective space.

6. The projective geometry of theIN-jm coefficient

In this section we generalize the results of the preceding section ¥ gy coefficient with
graphG. The N-jm coefficient is still described by a finite projective space (natgcbout at
each pointt € T are attached a momentupp with projectionM,, and at each point in the
dual space a pair of comomenta. The geometry ofMhgn coefficient depends not only on
the embeddingZ C T of G, but also on aV/-chain that specifies the projectiomg of the
N-jm coefficient in terms of the/, of T. We present a construction of this geometry based
on a 3i-j coefficient obtained by completing graph

6.1. The graplG

Let us denote theg free edges of; by numbers 12, ..., f (withi =i + f) and their ends
by s;, thus fixing an (arbitrary) cyclic order. By addingouter edges;s;+1, labelled withz;

(=12, ..., f)tographG, we construct a trivalent graph that we call &zompletiorof G.
Puttingn = (g +2f —3)/3, G is the graph of a@ + 1)-j coefficient with 3» + 1) edges and
2(n +1) vertices. We call the cycle = {71, 1o, .. ., 7/} Of G theouter cycle

Example (35 coefficient). We take the cyclic order 123 for the free edgesiot= figure 1.
We haven = 1 andG is figure 4 of the 67 coefficient with outer cycle = {4, 5, 6}.

For each open diagram € Q,, of G we define a closed diagram 6f notedw and called

thecompletiorof w, obtained by adjoining te@ the outer edges,, tp+1, . . ., T._1. Graphically,
to obtainw from w, we join b to a on the outer cycle going in the cyclic order. For thg 3-
coefficient, the completion of the open diagraym(i = 1, 2, ..., 6) in figure 6 is the closed

diagrame; of the 6-j coefficient in figure 5. We say that cycles@fof the formw are oftype
a. Note thatw’ = w + 7 is also of typex and is the completion of the open diagrarme €2,
reversed ofv € Q.

We define the completiow of a closed diagranw of G to bew itself when considered
as a cycle olG. Such a cyclav of G is said oftype 8, and cyclew + r of G is said oftype
y. The closed diagrams @f are thus classified in types(for the outer cycle)y, 8, y ands
(for the remaining diagrams).
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Iz
2 7
J5
I3 |8
! 4
I
J9 Figure 9. Completion of figure 2 or 3.
T 0 T B
) a y a

Figure 10. Closed diagrams of types § anda in the  Figure 11. Closed diagrams of types 8, y anda in the
completion of figure 2. Arrows show the cyclic order oncompletion of figure 3.
the outer cycle.

Examples. Taking figure 9 as a completion of figure 2, figure 10 shows the outer eycle
the two diagrams of typé, and one diagram of type which is the completion of an open
diagram ofQ23,; the remaining 11 diagrams 6f are of typex. Taking the same figure 9 as a
completion of figure 3, figure 11 shows the outer cyl¢éhe only diagrams of typegandy,
and one diagram of type which is the completion of an open diagramcefy; the remaining
11 diagrams oG are of typex.

We define the projective spacBsand P* for G as in section 5, but their dimension is now
n+ 1 instead of: and the number of points @&f (or P*) is p,+1 = 2p, + 1 with p, = 2"*1 -1,

6.2. The projective space of momenta and th&/-chain F

Let T be the hyperplane af dual to the outer cycle € P*. By property (24),I contains all
edges ofG. We callT the projective space of momentd G, and say as before that the set
of edgesE is embedded iff’. This embedding C T is the same as the embedding@)in
PG(n, 2), where graprﬁ is obtained by joining allf ends ofG (or shrinking cycler of G to
a point). Itis thus independent of the cyclic order of the free edges used to corstruct
Theouteredges, ..., 7y of G are identified with points aP \ 7. Choosingany € P\T,
that we call thecentreof P, we put, ift £ 1,, 0, =t+1, € Tfora=1,2,..., f. There are
two kinds of choices of the centre

e The centre is different from all outer edges. We call the ordered set gf foéntsp, and
flinesp,_1p, (a=1,2,..., f)the(closed)M-chain F = (p1, p2, ..., ps).

e The centre is one of the outer edges. Let us takep;. The aboveF exists inT U {0}
with o, = 0. By keeping only its points and lines i, we obtain thgopen)M-chain
F = (p1, p2, ..., ps—1) Of f — 1 points andf — 2 lines.
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Free edge: of G is incident with the outer edges_; andz,, so thata = p,_1 + p,, which
means that thé/-chain has the following property:

free edger of G is the third point on linep,_1 0, of the
M-chain. For an opeM-chain, the beginning; (resp.
endingp;_1) of the M-chain is identified with free edge 1
(resp. f) of G.

(30)

Example (37 coefficient). The first case occurs when we takat j;. The closed-chain

is (1, 2, 3) with free edge 1 (resp. 2, 3) being the third point on line 23 (resp. 31, 12). The
second case occurs for the other choices of the centre. &gy, the openM-chain(3, 2) is
shown in equation (8).

6.3. The projective spacg* of comomenta

Let 7* be the hyperplane oP* dual to the centre € P. Consideringl and 7* as dual
projective space® G (n, 2) of dimensior, we callT* the projective space of comomerdé
G. Atpointi € T*, we have already comomentupof P*, which we callupper comomentum
of T*. We also associate o= T* thelower comomenturii = /..;, which is the comomentum
in P* atthe third pointon linei. The typesd, 8, y or§) of these upper and lower comomenta
are the types of the corresponding cycle®in

At pointk € T, we already have momentuyp of P. We also associate foa projection

My = jivr — Ji (32)
which is the difference of the momenta at point ¢ + k in P \ T (the third point on the line
joining k to the centre) and at the centre. The triangular conditiprisj; imply that j, M,
satisfies projection conditions.

Fork € T, the discrete Fourier transform expressing the momenta in terms of comomenta
is (see the appendix):

=3 > W+l (32)
ieT*\k*
M =3 Z =1 (33)
ieT*\k*
with inverse transform foi € T*:
1
b= = ) X+ My) (34)
keT
1 .
i = =5 D i = My). (35)
keT

Let us now show that we can identify which comomépitaf typesw andg are associated
to closed and open diagrams@fnly from the embedding c T and theM-chainF. Using
property (24), we obtain the following, which proves also that thé&Z — 1)! arbitrary choices
(cyclic ordering of thef free edges, choice of the centre amofit} points) in the construction
of T andT* are completely encoded by tM-chain F:

e If i = w e T*isthe completion of a closed diagramof G, thenE \ i* is the set of edges
of w. The upper comomentufnis then associated w0 and the lower comomentuihis
of typey. Note that, since the completion of any closed diagrai isfin 7*, comomenta
of type 8 are always upper comomenta.
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o If i = @ € T* is the completion of an open diagrame Q,, of G, thenE \ i* is the
set of edges ob and F \ i* is the open chaim, pp+1 . . . po—1. COmomentuni; is then
associated te and!; to the reversed open diagram

We also denote the comomenta of typeand 8 by («;)1<i<p @and(B;) p<i<p+q, labelled
accordingly to the above associations, and those of typesid s by (¥;) prg<i<p+2g and
(8:) pr2g<i<2p,» 1abelled arbitrarily ¢8y § notationfor comomenta).

Example (35 coefficient). When we take the centreof P at j,, T* is the comomentum line
ereseg. The ordered pair of comomentd ate; (resp. es, eg) is the paireiaa (resp. asaz,
agez) as pictured in equation (9). Equations (34) and (35) give equation (4).

6.4. The formula of hidden momenta

Let us give specified values {a;)1<i<p and(8;) p<i<p+; and so to comomenta &f* of types

a andgB. We call, as beforesample valueshe values of momentg, and projectionsn,, of

the N-jm coefficient that result from matrix equation (15). We hut 0 for the comomenta
of P* of typesy ands. All upper and lower comomenta @&t have then specified values. We
use these comomenta Bf (with an arbitrary value for comomentuinat the outer cycle) in
equation (27) to compute the momenta at edges.oThe sample value of; at edgek of G

is the same as momentum at edgef G and the sample value of, on free edge: of G is
given by j. — j.._,, the difference of momenta on the outer edgeandz, ; of G adjacent
toa. The sample value of; at edgek of G is thus given by equation (32). The sample value
of m, is related to the projection®; (defined by equation (31) and given by equation (33)) at
points of theM-chain. If theM-chain is closed,

mg = MC - Mb (36)

whereb = p,_1 andc = p, are collinear withu by property (30). If theM-chain is open,
with beginningd = p; and ending = p;_1, equation (36) is replaced by

myg = Md m, = —Mg (37)
for free edged ande in G.

Example (37 coefficient). When we take the centreof P at j7, the projectionsV, are
defined from

My = ja—j7 Mz = js— j7 M3 = jes — j7 (38)
and the closed/-chain(1, 2, 3) corresponds to relations

my = Mz — M, my = My — M3 mz = My — M;. (39)
When we take the centreof P at j4, the projectionsV;, are defined from

Mi=j7—ja Mz = je — ja M3 = js— ja (40)

and the oper/-chain(3, 2) corresponds to relations (3).

The system of equations (32) and (33) is thus an enlargement of the matrix equation (15).
It defines an array of 2p, values of momenta and projectiofs M )7 associated with the
p» points of the projective spa@efor a specified set of comomenta. We ¢alden momenta
the j; that do not correspond to edgesin The projectionsVf, on theM-chain are related to
the projectionsn, of the N-jm coefficient by equations (36) and (37). In the case of an open
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M-chain, thesef — 1 projections are completely determined (they @sible projectionk
In the case of a closed-chain, thesef projections form a set with onleidden projection
(any one of them). The remaininyg,, at points not in the\/-chain, are also calledidden
projections It can surprisingly happen that at free edggvhere j,m,; are known) projection
M, is hidden.

Example (3 coefficient). When we take the centreof P at j,;, the openM-chain is
(3,2). There is only one hidden projectiof;. The system of equations (32) and (33) is

an enlargement of equation (21) (with, = —m, and M3 = mg3) containing the additional
equation for hidden projectioM;:
My = (—ap —aztas+ag)/2. (42)

The inverse of the system of equations (21) and (41) is the system of equations (4) (which are
the same as equations (34) and (35)).

For arbitrary values of momenta and projectionsd/; in array X, we calculate the 2,
comomenta of * by equations (34) and (35). The ful}-J M symbol({X) is defined by, using
theaBy s notation for comomenta,

(o] + 18] + 1)! (=D)letipl ifall o, eN
()=1  (el+Dt [TLe! 125, p andall % =0,8=0 (42)
0 otherwise.

We rewrite equation (19) as tifermula of hidden momentathe value{x} of the N-jm
coefficient is

)4 rtq
) = N Y ()X x) D' =TT [T * (43)
i=1 i=p+l

whereN is given by equation (16) and where the sum is over the hidden momenta and hidden
projections of the fullp,-J M symbol.

The sum in equation (43) is limited by triangular conditighg, j. (for each lineabc in
T), as in equation (29) for then3; coefficient, and by projection conditionsM, (for each
pointk € T). The conditions; = 0, §; = 0 in equation (42) have the effect of imposing
2p, — p — q relations between hidden momenta and projections. If we want to determine a
set of independent hidden momenta and projections, for each pair of conditieris= 0 at
acyclei € T* of typed, we remove one hidden momentum and one hidden projection and for
each conditiory; = 0, we remove one hidden projection. The total numbef independent
hidden momenta and projections is given by equation (20).

In the case of ai3-j coefficient, the above construction remains valid when we take for
the outer cycler added toG a loop disconnected fro&. All comomenta come in pairs of
type 8y so that conditions; = 0 imposeM,. = j; for all projections. The simpler geometry
of the 3:-j coefficient is recovered by ignoring thecomomenta and the projections.

Each choice of tha/-chain gives slightly different, but algebraically equivalent, formulae
(the assignments of,, 8, to/;I! and ofm, to M; depend on thé/-chain).

7. Concluding remarks

We have presented an interpretation of the combinatorial formula fay the coefficients in
terms of hidden angular momengaand projectiond/,.. Itis quite puzzling that the projections
m, of the N-jm coefficient appear only indirectly through the projectidfisas specified by
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D p* P

Figure 12. Representation of Figure 13. PartitionP* = AU BU C Ud*.
the 3JM symbol in Euclidean
geometry.

a M-chain. The comomenta, in the case of the j3coefficient, have been interpreted as
occupation numberi [15], but the physical interpretation of hidden angular momenta and
projections is an open question.

We have drawn (figure 12) in three-dimensional Euclidean space the momenta and
projections that take part in the construction of the projective space for yhecgfficient:
length[BD] = js, length[BB'] = M5, .... The seven triangular conditions Bfrepresented
by collinearities in figure 8 now appear as triangles (triangjej; appears four times). When
we take the centre of P at j7, the M-chain is(1, 2, 3), the projectionsV;, are defined by
equation (38) and the projections, by equation (39). The three points and three lines in the
M-chain are pictured as the three edges and three faces adjacein tetrahedrorO ABC.

We finally consider a limit case in the spirit of Ponzano and Regge [{RBABC are kept
fixed andD goes to infinity in the vertical direction. The projectiol#, m; become genuine
geometric projections of; on the vertical direction. In [19], this limit is used to obtain the
3-j coefficient, pictured by the shaded triangl&C, from the 6+ coefficient, pictured by
tetrahedrodBC D.

Appendix. Derivation of discrete Fourier transforms between momenta and comomenta

The dual hyperplanes if* of ¢, r andk areT* = r* = AUd*, r* = BUd* andk* = C Ud*,
whereA, B, C, d* is a partition of P* and whered* is the (n — 1)-dimensional projective
subspace dual to lingkr (see figure 13). Note thate C. From equation (27)
=3y li=3)y Gt =3 Y Ui+ (44)
i€cAUB icA ieT*\k*
which proves equation (32). Also from equation (27)

DI EE DI (45)

ieAUC ieBUC

M=3Y Li=3> Li=3Y (li—lw)=3 Y (=1 (46)

icA ieB icA ieT*\k*

Jr

so that
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which proves equation (33).
The inverse transform, equations (34) and (35) results from properties of characters as in
the case of ther3j coefficient.
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